Share Email Print

Proceedings Paper

Application of time-resolved glucose concentration photoacoustic signals based on an improved wavelet denoising
Author(s): Zhong Ren; Guodong Liu; Zhen Huang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.

Paper Details

Date Published: 29 October 2014
PDF: 10 pages
Proc. SPIE 9273, Optoelectronic Imaging and Multimedia Technology III, 92733G (29 October 2014); doi: 10.1117/12.2070843
Show Author Affiliations
Zhong Ren, Jiangxi Science and Technology Normal Univ. (China)
Nanchang Univ. (China)
Guodong Liu, Jiangxi Science and Technology Normal Univ. (China)
Zhen Huang, Jiangxi Science and Technology Normal Univ. (China)

Published in SPIE Proceedings Vol. 9273:
Optoelectronic Imaging and Multimedia Technology III
Qionghai Dai; Tsutomu Shimura, Editor(s)

© SPIE. Terms of Use
Back to Top