Share Email Print
cover

Proceedings Paper

Fundamental matrix estimation for binocular vision measuring system used in wild field
Author(s): Nian Yan; Xiangjun Wang; Feng Liu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A method has been proposed to estimate the fundamental matrix of a positing and monitoring binocular vision system with a long working distance and a large field of view. Because of the long working distance and large field of view, images grabbed by this system are seriously blurred, leading to a lack of local features. The edge points are acquired using the Canny algorithm firstly, then the pre-matched points are obtained by the GMM-based points sets registration algorithm, and eventually the fundamental matrix are estimated using the RANSAC algorithm. In actual application, two cameras are 2km away from the object, the fundamental matrix are figured out, and the distance between each point and the corresponding epipolar line is less than 0.8 pixel. Repeated experiments indicate that the average distances between the points and the corresponding epipolar lines are all within 0.3 pixel and the deviations of the distances are all within 0.3 pixel too. This method takes full advantage of the edges in the environment and does not need extra control points, whats more, it can work well in low SNR images.

Paper Details

Date Published: 24 November 2014
PDF: 7 pages
Proc. SPIE 9301, International Symposium on Optoelectronic Technology and Application 2014: Image Processing and Pattern Recognition, 93010S (24 November 2014); doi: 10.1117/12.2070319
Show Author Affiliations
Nian Yan, Tianjin Univ. (China)
Xiangjun Wang, Tianjin Univ. (China)
Feng Liu, Tianjin Univ. (China)


Published in SPIE Proceedings Vol. 9301:
International Symposium on Optoelectronic Technology and Application 2014: Image Processing and Pattern Recognition
Gaurav Sharma; Fugen Zhou; Jennifer Liu, Editor(s)

© SPIE. Terms of Use
Back to Top