Share Email Print
cover

Proceedings Paper

Towards reduced impact of EUV mask defectivity on wafer
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The defectivity challenges of extreme ultraviolet (EUV) masks, that need to be addressed before production readiness of EUV lithography is assured from the mask perspective, are twofold. First, the EUV-specific defect type relating to the multi-layer (ML) mirror, the so-called ML-defects, require to become more detectable than they are printable. This not only requires proven capability of blank inspection, but also the existence of satisfactory printability mitigation strategies (comprising avoidance, pattern shift methodology, compensation repair). Both these assets need to become available within the mask supply chain, as there is little that can still be done about such residual defects at the wafer fab. In a production phase, finding unexpected printing ML-defects is unacceptable. It is shown how the specific way-of-working in use at imec, starting from the printed wafer, contributes to related learning and identification of remaining gaps, in getting this issue fully dealt with. The second challenge relates to particle contamination during use of the reticle at the wafer fab. Avoiding overlaycritical particles on the backside of NXE3100 reticles is facilitated by the established way-of-working. Minimizing the occurrence of particles “hopping” between reticles via the electrostatic clamp of the scanner (so-called clamp-traveling particles) is a major driver for appropriate mask cleaning. The latter may not have negative impact by frequent use, in view of the highly vulnerable EUV mask stack, and especially for the present “black-border” solution in which the ML is etched away at the image border on the reticle. A lot of effort is spent into monitoring of NXE3100 reticles for particle adders on the pattern side. This is realized by comparing past and present mask defect maps obtained by inspection of printed wafers with subsequent repeater analysis.

Paper Details

Date Published: 28 July 2014
PDF: 8 pages
Proc. SPIE 9256, Photomask and Next-Generation Lithography Mask Technology XXI, 92560L (28 July 2014); doi: 10.1117/12.2070045
Show Author Affiliations
R. Jonckheere, IMEC (Belgium)
D. Van den Heuvel, IMEC (Belgium)
A. Pacco, IMEC (Belgium)
I. Pollentier, IMEC (Belgium)
B. Baudemprez, IMEC (Belgium)
C. Jehoul, IMEC (Belgium)
J. Hermans, IMEC (Belgium)
E. Hendrickx, IMEC (Belgium)


Published in SPIE Proceedings Vol. 9256:
Photomask and Next-Generation Lithography Mask Technology XXI
Kokoro Kato, Editor(s)

© SPIE. Terms of Use
Back to Top