Share Email Print

Proceedings Paper

Implementation of 5-layer thermal diffusion scheme in weather research and forecasting model with Intel Many Integrated Cores
Author(s): Melin Huang; Bormin Huang; Allen H.-L. Huang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

For weather forecasting and research, the Weather Research and Forecasting (WRF) model has been developed, consisting of several components such as dynamic solvers and physical simulation modules. WRF includes several Land- Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the land’s state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. The features, efficient parallelization and vectorization essentials, of Intel Many Integrated Core (MIC) architecture allow us to optimize this WRF 5-layer thermal diffusion scheme. In this work, we present the results of the computing performance on this scheme with Intel MIC architecture. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.1x. Accordingly, the same CPU-based optimizations improved the performance on Intel Xeon E5- 2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

Paper Details

Date Published: 15 October 2014
PDF: 9 pages
Proc. SPIE 9247, High-Performance Computing in Remote Sensing IV, 924709 (15 October 2014); doi: 10.1117/12.2069426
Show Author Affiliations
Melin Huang, Univ. of Wisconsin-Madison (United States)
Bormin Huang, Univ. of Wisconsin-Madison (United States)
Allen H.-L. Huang, Univ. of Wisconsin-Madison (United States)

Published in SPIE Proceedings Vol. 9247:
High-Performance Computing in Remote Sensing IV
Bormin Huang; Sebastian López; Zhensen Wu, Editor(s)

© SPIE. Terms of Use
Back to Top