Share Email Print
cover

Proceedings Paper

Passive athermalization of doublets in 8-13 micron waveband
Author(s): Norbert Schuster
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Passive athermalization of lenses has become a key-technology for automotive and other outdoor applications using modern uncooled 25, 17 and 12 micron pixel pitch bolometer arrays. Typical pixel counts for thermal imaging are 384x288 (qVGA), 640x480 (VGA), and 1024x768 (XGA). Two lens arrangements (called Doublets) represent a cost effective way to satisfy resolution requirements of these detectors with F-numbers 1.4 or faster. Thermal drift of index of refraction and the geometrical changes (in lenses and housing) versus temperature defocus the initial image plane from the detector plane. The passive athermalization restricts this drop of spatial resolution in a wide temperature range (typically -40°C…+80°C) to an acceptable value without any additional external refocus. In particular, lenses with long focal lengths and high apertures claim athermalization. A careful choice of lens and housing materials and a sophistical dimensioning lead to three different principles of passivation: The Passive Mechanical Athermalization (PMA) shifts the complete lens cell, the Passive Optical and Mechanical Athermalization (POMA) shifts only one lens inside the housing, the Passive Optical Athermalization (POA) works without any mechanism. All three principles will be demonstrated for a typical narrow-field lens (HFOV about 12°) with high aperture (aperture based F-number 1.3) for the actual uncooled reference detector (17micron VGA). Six design examples using different combinations of lens materials show the impact on spatial lens resolution, on overall length, and on weight. First order relations are discussed. They give some hints for optimization solutions. Pros and cons of different passive athermalization principles are evaluated in regards of housing design, availability of materials and costing. Examples with a convergent GASIR®1-lens in front distinguish by best resolution, short overall length, and lowest weight.

Paper Details

Date Published: 7 October 2014
PDF: 12 pages
Proc. SPIE 9249, Electro-Optical and Infrared Systems: Technology and Applications XI, 924907 (7 October 2014); doi: 10.1117/12.2066618
Show Author Affiliations
Norbert Schuster, Umicore Electro-Optic Materials (Belgium)


Published in SPIE Proceedings Vol. 9249:
Electro-Optical and Infrared Systems: Technology and Applications XI
David A. Huckridge; Reinhard Ebert, Editor(s)

© SPIE. Terms of Use
Back to Top