Share Email Print
cover

Proceedings Paper

In-situ laser-induced contamination monitoring using long-distance microscopy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Operating high power space-based laser systems in the visible and UV range is problematic due to laser-induced contamination (LIC). In this paper LIC growth on high-reflective (HR) coated optics is investigated for UV irradiation of 355 nm with naphthalene as contamination material in the range of 10-5 mbar. The investigated HR optics were coated by different processes: electron beam deposition (EBD), magnetron sputtering (MS) or ion beam sputtering (IBS). In-situ observation of contamination induced damage was performed using a long distance microscope. Additionally the onset and evolution of deposit formation and contamination induced damage of optical samples was observed by in-situ laserinduced fluorescence and reflection monitoring. Ex-situ characterization of deposits and damage morphology was performed by differential interference contrast and fluorescence microscopy. It was found that contamination induced a drastic reduction of laser damage threshold compared to values obtained without contamination. Contamination deposit and damage formation was strongest on IBS followed by MS and smallest on EBD.

Paper Details

Date Published: 31 October 2014
PDF: 10 pages
Proc. SPIE 9237, Laser-Induced Damage in Optical Materials: 2014, 92372B (31 October 2014); doi: 10.1117/12.2066465
Show Author Affiliations
Paul Wagner, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
Helmut Schröder, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
Wolfgang Riede, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)


Published in SPIE Proceedings Vol. 9237:
Laser-Induced Damage in Optical Materials: 2014
Gregory J. Exarhos; Vitaly E. Gruzdev; Joseph A. Menapace; Detlev Ristau; MJ Soileau; Detlev Ristau, Editor(s)

© SPIE. Terms of Use
Back to Top