Share Email Print

Proceedings Paper

Dynamics and topological mass of skyrmionic spin structures (presentation video)
Author(s): Christoforos Moutafis; Felix Büttner; Andre Bisig; Benjamin Krüger; C. A. F. Vaz; Michael Foerster; Mohamad-Assaad Mawass; Michael Schneider; Christian Gunther; Jan Geilhufe; C. von Korff Schmising; J. Mohanty; B. Pfau; Stefan Schaffert; Tomek Schulz; Markus Weigand; Henk J. M. Swagten; Jörg Raabe; Mathias Kläui; Stefan Eisebitt
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Skyrmions are topologically protected particle-like configurations, with a topological complexity described by their Skyrmion number. In magnetic systems, they have been numerically predicted to exhibit rich dynamics, such as the gyrotropic and breathing modes, dominated by their topology. Recent experimental advances brought their static manipulation well under control. However, their dynamical behaviour is largely unexplored experimentally. In this work, we provide with the first direct observation of eigenmode skyrmion dynamics. In particular, we present dynamical imaging data with high temporal and spatial resolution to demonstrate the GHz gyrotropic mode of a single skyrmion bubble, as well as the breathing-like behaviour of a pair of skyrmionic configurations. We use the observed dynamical behaviour to confirm the skyrmion topology and show the existence of an unexpectedly large inertia that is key for accurately describing skyrmion dynamics. Our results demonstrate new ways for experimentally observing skyrmion dynamics and provide a framework for describing their behaviour. Furthermore, the results outline a link between the dynamical behaviour of skyrmions and their distinct topological properties, with possible ramifications for skyrmionic spin structures research including technological applications.

Paper Details

Date Published: 17 August 2014
PDF: 1 pages
Proc. SPIE 9167, Spintronics VII, 91670W (17 August 2014); doi: 10.1117/12.2065838
Show Author Affiliations
Christoforos Moutafis, PSI (Switzerland)
Felix Büttner, Johannes Gutenberg Univ. Mainz (Germany)
Technische Univ. Berlin (Germany)
Andre Bisig, Johannes Gutenberg Univ. Mainz (Switzerland)
Benjamin Krüger, Johannes Gutenberg Univ. Mainz (Germany)
C. A. F. Vaz, Paul Scherrer Institut (Switzerland)
Michael Foerster, Johannes Gutenberg Univ. Mainz (Germany)
Mohamad-Assaad Mawass, Johannes Gutenberg Univ. Mainz (Germany)
Michael Schneider, Technische Univ. Berlin (Germany)
Christian Gunther, Technische Univ. Berlin (Germany)
Jan Geilhufe, Technische Univ. Eindhoven (Germany)
C. von Korff Schmising, Technische Univ. Berlin (Germany)
J. Mohanty, Technische Univ. Berlin (Germany)
B. Pfau, Technische Univ. Berlin (Germany)
Stefan Schaffert, Technische Univ. Berlin (Germany)
Tomek Schulz, Johannes Gutenberg Univ. Mainz (Germany)
Markus Weigand, Max-Planck Institut für Intelligente Systeme (Germany)
Henk J. M. Swagten, Technische Univ. Eindhoven (Netherlands)
Jörg Raabe, Paul Scherrer Institut (Switzerland)
Mathias Kläui, Johannes Gutenberg Univ. Mainz (Germany)
Stefan Eisebitt, Technische Univ. Berlin (Germany)
Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH (Germany)

Published in SPIE Proceedings Vol. 9167:
Spintronics VII
Henri-Jean Drouhin; Jean-Eric Wegrowe; Manijeh Razeghi, Editor(s)

© SPIE. Terms of Use
Back to Top