Share Email Print
cover

Proceedings Paper

Design and analysis on thermal adaptive clamping device for PPMgLN crystal used in solid state laser
Author(s): Conglin Yan; Yongliang Chen; Wei Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The quality of clamping device for PPMgLN crystal has a vital influence on the optical property of solid-state laser. It has highly requirements of work stability and environmental adaptation ability, especially the thermal adaptation under high temperature differences. To achieve thermal adaptation, structural stiffness will be unavoidably weakened. How to keep both enough stiffness and thermal adaptation as far as possible is the key design point and also difficult point. In this paper, a kind of flexible thermal release unit which can work permanent under 130±10°C is studied. Thermal compensation principle and flexible thermal release theory are applied. Analysis results indicate that this device can effectively decreased the thermal stress of the crystal from 85MPa to 0.66MPa. The results of the vibration resistance test on the optical axis direction of the crystal indicate that the device can provide at least 5.62N to resistant 57.2g impact vibration and 18.5g impact vibration in the side direction, well satisfied the requirements of ability to resistant 6g impact vibration.

Paper Details

Date Published: 3 February 2015
PDF: 7 pages
Proc. SPIE 9255, XX International Symposium on High-Power Laser Systems and Applications 2014, 92550H (3 February 2015); doi: 10.1117/12.2065229
Show Author Affiliations
Conglin Yan, Institute of Applied Electronics (China)
Yongliang Chen, Institute of Applied Electronics (China)
Wei Zhang, Institute of Applied Electronics (China)


Published in SPIE Proceedings Vol. 9255:
XX International Symposium on High-Power Laser Systems and Applications 2014
Chun Tang; Shu Chen; Xiaolin Tang, Editor(s)

© SPIE. Terms of Use
Back to Top