Share Email Print

Proceedings Paper

Nonlinear interrelation of chaotic time series with wavelet transform and recurrence plot analyses
Author(s): Linhua Deng
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Two relatively advanced and powerful analysis methods, i.e. coherence-wavelet transform and cross-recurrence plot, which are used to probe the nonlinear interrelation between different time series, have been applied to non-stationary time series in this paper. The case study uses the chaotic time series of astronomical observational data for the time interval from January 1966 to December 2010. We examined the phase dynamical properties between two data sets and found that the availability of a physically meaningful phase definition depends crucially on the appropriate choice of the reference frequencies. Furthermore, their phase shift is not only time-dependent but also frequency-dependent. We conclude that advanced nonlinear analysis approaches are more powerful than traditional linear methods when they are applied to analyze nonlinear and non-stationary dynamical behavior of complex physical systems.

Paper Details

Date Published: 16 April 2014
PDF: 5 pages
Proc. SPIE 9159, Sixth International Conference on Digital Image Processing (ICDIP 2014), 915923 (16 April 2014); doi: 10.1117/12.2064629
Show Author Affiliations
Linhua Deng, Yunnan Observatories (China)

Published in SPIE Proceedings Vol. 9159:
Sixth International Conference on Digital Image Processing (ICDIP 2014)
Charles M. Falco; Chin-Chen Chang; Xudong Jiang, Editor(s)

© SPIE. Terms of Use
Back to Top