Share Email Print

Proceedings Paper

Projection methods in motion estimation and compensation
Author(s): Ton Kalker; Martin Vetterli
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The standard approach to exploiting motion fields in block-based hybrid video coding schemes is motion compensation of the current frame using the motion field, followed by DCT coding of the residue. In this paper we argue that this separation of approximation methods (non- linear prediction followed by transform coding) is unfortunate in low bit-rate applications. In low bit-rate applications, only a limited set of DCT coefficients is retained. Expressing the end result of motion estimation/compensation followed by separate residue coding in terms of basic linear algebra, we find a sub-optimal linear approximation scheme. In this paper we replace motion compensation and separate residue coding by (optimal) orthogonal projection. We show that for low bit-rate applications, the orthogonal projection method performs better than conventional methods. In one extreme case, it is better to use projection with only 15 DCT coefficients retained, than to use separate residue coding with all 64 DCT coefficients retained. A critical ingredient in the proposed scheme is the choice of an orthogonal basis in the vector spaces involved. In the current scheme, these bases are determined locally, implying a high computational complexity. Possible directions for the reduction of this computational complexity are discussed.

Paper Details

Date Published: 17 April 1995
PDF: 12 pages
Proc. SPIE 2419, Digital Video Compression: Algorithms and Technologies 1995, (17 April 1995); doi: 10.1117/12.206355
Show Author Affiliations
Ton Kalker, Philips Research Eindhoven (Netherlands)
Martin Vetterli, Univ. of California/Berkeley (United States)

Published in SPIE Proceedings Vol. 2419:
Digital Video Compression: Algorithms and Technologies 1995
Arturo A. Rodriguez; Robert J. Safranek; Edward J. Delp, Editor(s)

© SPIE. Terms of Use
Back to Top