Share Email Print
cover

Proceedings Paper

Determination of the SNPP VIIRS SDSM screen transmittance from both yaw and non-yaw maneuver data
Author(s): Ning Lei; Xuexia Chen; Xiaoxiong Xiong
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite carries out radiometric calibration of its reflective solar bands primarily through observing a sunlit onboard solar diffuser (SD). The SD bidirectional reflectance distribution function (BRDF) degrades over time. The degradation factor is determined by an onboard solar diffuser stability monitor (SDSM) which observes the Sun through a pinhole screen and the sunlit SD. The transmittance of the SDSM pinhole screen over a range of solar angles was determined prelaunch and used initially to determine the BRDF degradation factor. The degradation factor versus time curves were found to have a number of very large unphysical undulations likely due to the inaccuracies in the prelaunch determined SDSM screen transmittance. To validate and if necessary to refine both the SD and the SDSM screen transmittances, satellite yaw maneuvers were carried out. With the yaw maneuver data determined SDSM screen transmittance, the computed BRDF degradation factor curves still have large unphysical ripples, indicating that the projected solar horizontal angular step size in the yaw maneuver data is too large to resolve the transmittance at a fine angular scale. We develop a methodology to use both the yaw maneuver and regular on-orbit data to determine the SDSM screen transmittance at a fine angular scale with a relative error standard deviation from 0.00029 (672 nm; detector 5) to 0.00074 (926 nm; detector 8). With the newly determined SDSM screen transmittance, the computed BRDF degradation factor behaves much more smoothly over time.

Paper Details

Date Published: 26 September 2014
PDF: 12 pages
Proc. SPIE 9218, Earth Observing Systems XIX, 921803 (26 September 2014); doi: 10.1117/12.2062303
Show Author Affiliations
Ning Lei, Sigma Space Corp. (United States)
Xuexia Chen, Sigma Space Corp. (United States)
Xiaoxiong Xiong, NASA Goddard Space Flight Ctr. (United States)


Published in SPIE Proceedings Vol. 9218:
Earth Observing Systems XIX
James J. Butler; Xiaoxiong (Jack) Xiong; Xingfa Gu, Editor(s)

© SPIE. Terms of Use
Back to Top