Share Email Print
cover

Proceedings Paper

A visible light imaging device for cardiac rate detection with reduced effect of body movement
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A visible light imaging system to detect human cardiac rate is proposed in this paper. A color camera and several LEDs, acting as lighting source, were used to avoid the interference of ambient light. From people’s forehead, the cardiac rate could be acquired based on photoplethysmography (PPG) theory. The template matching method was used after the capture of video. The video signal was discomposed into three signal channels (RGB) and the region of interest was chosen to take the average gray value. The green channel signal could provide an excellent waveform of pulse wave on the account of green lights’ absorptive characteristics of blood. Through the fast Fourier transform, the cardiac rate was exactly achieved. But the research goal was not just to achieve the cardiac rate accurately. With the template matching method, the effects of body movement are reduced to a large extent, therefore the pulse wave can be detected even while people are in the moving state and the waveform is largely optimized. Several experiments are conducted on volunteers, and the results are compared with the ones gained by a finger clamped pulse oximeter. The contrast results between these two ways are exactly agreeable. This method to detect the cardiac rate and the pulse wave largely reduces the effects of body movement and can probably be widely used in the future.

Paper Details

Date Published: 23 September 2014
PDF: 6 pages
Proc. SPIE 9217, Applications of Digital Image Processing XXXVII, 92171I (23 September 2014); doi: 10.1117/12.2061352
Show Author Affiliations
Xiaotian Jiang, Beijing Institute of Technology (China)
Ming Liu, Beijing Institute of Technology (China)
Yuejin Zhao, Beijing Institute of Technology (China)


Published in SPIE Proceedings Vol. 9217:
Applications of Digital Image Processing XXXVII
Andrew G. Tescher, Editor(s)

© SPIE. Terms of Use
Back to Top