Share Email Print

Proceedings Paper

Robust recognition of degraded machine-printed characters using complementary similarity measure and error-correction learning
Author(s): Norihiro Hagita; Minako Sawaki
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Most conventional methods in character recognition extract geometrical features such as stroke direction, connectivity of strokes, etc., and compare them with reference patterns in a stored dictionary. Unfortunately, geometrical features are easily degraded by blurs, stains and the graphical background designs used in Japanese newspaper headlines. This noise must be removed before recognition commences, but no preprocessing method is completely accurate. This paper proposes a method for recognizing degraded characters and characters printed on graphical background designs. This method is based on the binary image feature method and uses binary images as features. A new similarity measure, called the complementary similarity measure, is used as a discriminant function. It compares the similarity and dissimilarity of binary patterns with reference dictionary patterns. Experiments are conducted using the standard character database ETL-2 which consists of machine-printed Kanji, Hiragana, Katakana, alphanumeric, an special characters. The results show that this method is much more robust against noise than the conventional geometrical feature method. It also achieves high recognition rates of over 92% for characters with textured foregrounds, over 98% for characters with textured backgrounds, over 98% for outline fonts, and over 99% for reverse contrast characters.

Paper Details

Date Published: 30 March 1995
PDF: 9 pages
Proc. SPIE 2422, Document Recognition II, (30 March 1995); doi: 10.1117/12.205826
Show Author Affiliations
Norihiro Hagita, NTT Basic Research Labs. (Japan)
Minako Sawaki, NTT Human Interface Labs. (Japan)

Published in SPIE Proceedings Vol. 2422:
Document Recognition II
Luc M. Vincent; Henry S. Baird, Editor(s)

© SPIE. Terms of Use
Back to Top