Share Email Print
cover

Proceedings Paper

Thermal and optical characterization for POLARBEAR-2 optical system
Author(s): Y. Inoue; N. Stebor; P. A. R. Ade; Y. Akiba; K. Arnold; A. E. Anthony; M. Atlas; D. Barron; A. Bender; D. Boettger; J. Borrilll; S. Chapman; Y. Chinone; A. Cukierman; M. Dobbs; T. Elleflot; J. Errard; G. Fabbian; C. Feng; A. Gilbert; N. W. Halverson; M. Hasegawa; K. Hattori; M. Hazumi; W. L. Holzapfel; Y. Hori; G. C. Jaehnig; A. H. Jaffe; N. Katayama; B. Keating; Z. Kermish; Reijo Keskitalo; T. Kisner; M. Le Jeune; A. T. Lee; E. M. Leitch; E. Linder; F. Matsuda; T. Matsumura; X. Meng; H. Morii; M. J. Myers; M. Navaroli; H. Nishino; T. Okamura; H. Paar; J. Peloton; D. Poletti; G. Rebeiz; C. L. Reichardt; P. L. Richards; C. Ross; D. E. Schenck; B. D. Sherwin; P. Siritanasak; G. Smecher; M. Sholl; B. Steinbach; R. Stompor; A. Suzuki; J. Suzuki; S. Takada; S. Takakura; T. Tomaru; B. Wilson; A. Yadav; H. Yamaguchi; O. Zahn
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment for B-mode detection. The PB-2 receiver has a large focal plane and aperture that consists of 7588 transition edge sensor (TES) bolometers at 250 mK. The receiver consists of the optical cryostat housing reimaging lenses and infrared filters, and the detector cryostat housing TES bolometers. The large focal plane places substantial requirements on the thermal design of the optical elements at the 4K, 50K, and 300K stages. Infrared filters and lenses inside the optical cryostat are made of alumina for this purpose. We measure basic properties of alumina, such as the index of refraction, loss tangent and thermal conductivity. All results meet our requirements. We also optically characterize filters and lenses made of alumina. Finally, we perform a cooling test of the entire optical cryostat. All measured temperature values satisfy our requirements. In particular, the temperature rise between the center and edge of the alumina infrared filter at 50 K is only 2:0 ± 1:4 K. Based on the measurements, we estimate the incident power to each thermal stage.

Paper Details

Date Published: 19 August 2014
PDF: 9 pages
Proc. SPIE 9153, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, 91533A (19 August 2014); doi: 10.1117/12.2055572
Show Author Affiliations
Y. Inoue, The Graduate Univ. for Advanced Studies (Japan)
N. Stebor, Univ. of California, San Diego (United States)
P. A. R. Ade, Cardiff Univ. (United Kingdom)
Y. Akiba, The Graduate Univ. for Advanced Studies (Japan)
K. Arnold, Univ. of California, San Diego (United States)
A. E. Anthony, Univ. of Colorado at Boulder (United States)
M. Atlas, Univ. of California, San Diego (United States)
D. Barron, Univ. of California, San Diego (United States)
A. Bender, McGill Univ. (Canada)
D. Boettger, Univ. of California, San Diego (United States)
J. Borrilll, Lawrence Berkeley National Lab. (United States)
Univ. of California, Berkeley (United States)
S. Chapman, Dalhousie Univ. (Canada)
Y. Chinone, High Energy Accelerator Research Organization, KEK (Japan)
Univ. of California, Berkeley (United States)
A. Cukierman, Univ. of California, Berkeley (United States)
M. Dobbs, McGill Univ. (Canada)
T. Elleflot, Univ. of California, San Diego (United States)
J. Errard, Univ. of California, Berkeley (United States)
Lawrence Berkeley National Lab. (United States)
G. Fabbian, AstroParticle et Cosmologie, CNRS, Univ. Paris Diderot (France)
Observatoire de Paris, IRFU-CEA (France)
Scuola Internazionale Superiore di Studi Avanzati (Italy)
C. Feng, Univ. of California, San Diego (United States)
A. Gilbert, McGill Univ. (Canada)
N. W. Halverson, Univ. of Colorado at Boulder (United States)
M. Hasegawa, High Energy Accelerator Research Organization, KEK (Japan)
The Graduate Univ. for Advanced Studies (Japan)
K. Hattori, High Energy Accelerator Research Organization, KEK (Japan)
M. Hazumi, High Energy Accelerator Research Organization, KEK (Japan)
The Graduate Univ. of Advanced Studies (Japan)
Kavli Institute for the Physics and Mathematics of the Universe, The Univ. of Tokyo (Japan)
W. L. Holzapfel, Univ. of California, Berkeley (United States)
Y. Hori, High Energy Accelerator Research Organization, KEK (Japan)
G. C. Jaehnig, Univ. of Colorado at Boulder (United States)
A. H. Jaffe, Imperial College London (United Kingdom)
N. Katayama, Kavli Institute for the Physics and Mathematics of the Universe, The Univ. of Tokyo (Japan)
B. Keating, Univ. of California, San Diego (United States)
Z. Kermish, Princeton Univ. (United States)
Reijo Keskitalo, Lawrence Berkeley National Lab. (United States)
T. Kisner, Lawrence Berkeley National Lab. (United States)
Univ. of California, Berkeley (United States)
M. Le Jeune, Observatoire de Paris, CNRS, Univ. Paris Diderot (France)
IRFU-CEA (France)
A. T. Lee, Univ. of California, Berkeley (United States)
Lawrence Berkeley National Lab. (United States)
E. M. Leitch, Univ. of Chicago (United States)
Kavli Institute for Cosmological Physics, The Univ. of Chicago (United States)
E. Linder, Lawrence Berkeley National Lab. (United States)
F. Matsuda, Univ. of California, San Diego (United States)
T. Matsumura, Japan Aerospace Exploration Agency (Japan)
X. Meng, Univ. of California, Berkeley (United States)
H. Morii, High Energy Accelerator Research Organization, KEK (Japan)
M. J. Myers, Univ. of California, Berkeley (United States)
M. Navaroli, Univ. of California, San Diego (United States)
H. Nishino, Kavli Institute for the Physics and Mathematics of the Universe, The Univ. of Tokyo (Japan)
T. Okamura, High Energy Accelerator Research Organization, KEK (Japan)
H. Paar, Univ. of California, San Diego (United States)
J. Peloton, Observatoire de Paris, CNRS, UNiv. Paris Diderot (France)
IRFU-CEA (France)
D. Poletti, Observatoire de Paris, CNRS, Univ. Paris Diderot (France)
IRFU-CEA
G. Rebeiz, Univ. of California, San Diego (United States)
C. L. Reichardt, Univ. of California, Berkeley (United States)
P. L. Richards, Univ. of California, Berkeley (United States)
C. Ross, Dalhousie Univ. (Canada)
D. E. Schenck, Univ. of Colorado at Boulder (United States)
B. D. Sherwin, Univ. of California, Berkeley (United States)
P. Siritanasak, Univ. of California, San Diego (United States)
G. Smecher, Three-Speed Logic, Inc. (Canada)
M. Sholl, Lawrence Berkeley National Lab. (United States)
B. Steinbach, Univ. of California, Berkeley (United States)
R. Stompor, Observatoire de Paris, CNRS, Univ. Paris Diderot (France)
IRFU-CEA (France)
A. Suzuki, Univ. of California, Berkeley (United States)
J. Suzuki, High Energy Accelerator Research Organization, KEK (Japan)
S. Takada, National Institute for Fusion Science (Japan)
S. Takakura, Osaka Univ. (Japan)
High Energy Accelerator Research Organization, KEK (Japan)
T. Tomaru, High Energy Accelerator Research Organization, KEK (Japan)
B. Wilson, Univ. of California, San Diego (United States)
A. Yadav, Univ. of California, San Diego (United States)
H. Yamaguchi, High Energy Accelerator Research Organization, KEK (Japan)
O. Zahn, Lawrence Berkeley National Lab. (United States)


Published in SPIE Proceedings Vol. 9153:
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII
Wayne S. Holland; Jonas Zmuidzinas, Editor(s)

© SPIE. Terms of Use
Back to Top