Share Email Print
cover

Proceedings Paper

Pointing control for the SPIDER balloon-borne telescope
Author(s): J. A. Shariff; P. A. R. Ade; M. Amiri; S. J. Benton; J. J. Bock; J. R. Bond; S. A. Bryan; H. C. Chiang; C. R. Contaldi; B. P. Crill; O. P. Doré; M. Farhang; J. P. Filippini; L. M. Fissel; A. A. Fraisse; A. E. Gambrel; N. N. Gandilo; S. R. Golwala; J. E. Gudmundsson; M. Halpern; M. Hasselfield; G. C. Hilton; W. A. Holmes; V. V. Hristov; K. D. Irwin; W. C. Jones; Z. D. Kermish; C. L. Kuo; C. J. MacTavish; P. V. Mason; K. G. Megerian; L. Moncelsi; T. A. Morford; J. M. Nagy; C. B. Netterfield; R. O'Brient; A. S. Rahlin; C. D. Reintsema; J. E. Ruhl; M. C. Runyan; J. D. Soler; A. Trangsrud; C. E. Tucker; R. S. Tucker; A. D. Turner; A. C. Weber; D. V. Wiebe; E. Y. Young
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present the technology and control methods developed for the pointing system of the Spider experiment. Spider is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope’s azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, Spider uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s2, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.

Paper Details

Date Published: 22 July 2014
PDF: 20 pages
Proc. SPIE 9145, Ground-based and Airborne Telescopes V, 91450U (22 July 2014); doi: 10.1117/12.2055166
Show Author Affiliations
J. A. Shariff, Univ. of Toronto (Canada)
P. A. R. Ade, Cardiff Univ. (United Kingdom)
M. Amiri, The Univ. of British Columbia (Canada)
S. J. Benton, Univ. of Toronto (Canada)
J. J. Bock, California Institute of Technology (United States)
Jet Propulsion Lab. (United States)
J. R. Bond, Canadian Institute for Theoretical Astrophysics, Univ. of Toronto (Canada)
Canadian Institute for Advanced Research (Canada)
S. A. Bryan, Case Western Reserve Univ. (United States)
H. C. Chiang, Univ. of KwaZulu-Natal (South Africa)
C. R. Contaldi, Imperial College London (United Kingdom)
B. P. Crill, California Institute of Technology (United States)
Jet Propulsion Lab. (United States)
O. P. Doré, California Institute of Technology (United States)
Jet Propulsion Lab. (United States)
M. Farhang, Univ. of Toronto (Canada)
Canadian Institute for Theoretical Astrophysics, Univ. of Toronto (Canada)
J. P. Filippini, California Institute of Technology (United States)
L. M. Fissel, Univ. of Toronto (Canada)
Northwestern Univ. (Canada)
A. A. Fraisse, Princeton Univ. (United States)
A. E. Gambrel, Princeton Univ. (United States)
N. N. Gandilo, Univ. of Toronto (Canada)
S. R. Golwala, California Institute of Technology (United States)
J. E. Gudmundsson, Princeton Univ. (United States)
M. Halpern, The Univ. of British Columbia (Canada)
Canadian Institute for Advanced Research (Canada)
M. Hasselfield, Princeton Univ. (United States)
G. C. Hilton, National Institute of Standards and Technology (United States)
W. A. Holmes, Jet Propulsion Lab. (United States)
V. V. Hristov, California Institute of Technology (United States)
K. D. Irwin, National Institute of Standards and Technology (United States)
Stanford Univ. (United States)
SLAC National Accelerator Lab., Kavli Institute for Particle Astrophysics and Cosmology (United States)
W. C. Jones, Princeton Univ. (United States)
Z. D. Kermish, Princeton Univ. (United States)
C. L. Kuo, Stanford Univ. (United States)
SLAC National Accelerator Lab., Kavli Institute for Particle Astrophysics and Cosmology (United States)
C. J. MacTavish, Univ. of Cambridge (United Kingdom)
P. V. Mason, California Institute of Technology (United States)
K. G. Megerian, Jet Propulsion Lab. (United States)
L. Moncelsi, California Institute of Technology (United States)
T. A. Morford, California Institute of Technology (United States)
J. M. Nagy, Case Western Reserve Univ. (United States)
C. B. Netterfield, Univ. of Toronto (Canada)
Canadian Institute for Advanced Research (Canada)
R. O'Brient, California Institute of Technology (United States)
Jet Propulsion Lab. (United States)
A. S. Rahlin, Princeton Univ. (United States)
C. D. Reintsema, National Institute of Standards and Technology (United States)
J. E. Ruhl, Case Western Reserve Univ. (United States)
M. C. Runyan, Jet Propulsion Lab. (United States)
J. D. Soler, Univ. of Toronto (Canada)
Institut d'Astrophysique Spatiale, CNRS, Univ. Paris-Sud (France)
A. Trangsrud, Jet Propulsion Lab. (United States)
C. E. Tucker, Cardiff Univ. (United Kingdom)
R. S. Tucker, California Institute of Technology (United States)
A. D. Turner, Jet Propulsion Lab. (United States)
A. C. Weber, Jet Propulsion Lab. (United States)
D. V. Wiebe, The Univ. of British Columbia (Canada)
E. Y. Young, Princeton Univ. (United States)


Published in SPIE Proceedings Vol. 9145:
Ground-based and Airborne Telescopes V
Larry M. Stepp; Roberto Gilmozzi; Helen J. Hall, Editor(s)

© SPIE. Terms of Use
Back to Top