Share Email Print

Proceedings Paper

Comparison between robust and adaptive vector quantization for image compression
Author(s): Wail M. Refai
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Image data compression using vector quantization (VQ) has received a lot of attention in the last decade because of its simplicity and adaptability. The performance of encoding and decoding by VQ is dependent on the available codebook. It is important to design an optimal codebook based on some training set. The codebook is optimum in the sense that the codebook tries to match all the source data (the training set), as far as possible. Hence, the design of an efficient and robust codebook is of prime importance in VQ. Also, it was proven that Neural Network (NN) is a fast alternative approach to create the codebook. Neural Network appears to be particularly well-suited for VQ applications. Most NN learning algorithms are adaptive and can be used to produce effective scheme for training VQ.

Paper Details

Date Published: 23 March 1995
PDF: 6 pages
Proc. SPIE 2421, Image and Video Processing III, (23 March 1995); doi: 10.1117/12.205492
Show Author Affiliations
Wail M. Refai, United Arab Emirates Univ. (United Arab Emirates)

Published in SPIE Proceedings Vol. 2421:
Image and Video Processing III
Robert L. Stevenson; Sarah A. Rajala, Editor(s)

© SPIE. Terms of Use
Back to Top