Share Email Print
cover

Proceedings Paper

The beam combiners of Gravity VLTI instrument: concept, development, and performance in laboratory
Author(s): L. Jocou; K. Perraut; T. Moulin; Y. Magnard; P. Labeye; V. Lapras; A. Nolot; G. Perrin; F. Eisenhauer; C. Holmes; A. Amorim; W. Brandner; C. Straubmeier
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Gravity is one of the second-generation instruments of the Very Large Telescope Interferometer that operates in the near infrared range and that is designed for precision narrow-angle astrometry and interferometric imaging. With its infrared wavefront sensors, pupil stabilization, fringe tracker, and metrology, the instrument is tailored to provide a high sensitivity, imaging with 4-millisecond resolution, and astrometry with a 10μarcsec precision. It will probe physics close to the event horizon of the Galactic Centre black hole, and allow to study mass accretion and jets in young stellar objects and active galactic nuclei, planet formation in circumstellar discs, or detect and measure the masses of black holes in massive star clusters throughout the Milky Way. As the instrument required an outstanding level of precision and stability, integrated optics has been chosen to collect and combine the four VLTI beams in the K band. A dedicated integrated optics chip glued to a fiber array has been developed. Technology breakthroughs have been mandatory to fulfill all the specifications. This paper is focused on the interferometric beam combination system of Gravity. Once the combiner concept described, the paper details the developments that have been led, the integration and the performance of the assemblies.

Paper Details

Date Published: 24 July 2014
PDF: 11 pages
Proc. SPIE 9146, Optical and Infrared Interferometry IV, 91461J (24 July 2014); doi: 10.1117/12.2054159
Show Author Affiliations
L. Jocou, Institut de Planétologie et d’Astrophysique de Grenoble, CNRS, Univ. Genoble Alpes (France)
K. Perraut, Institut de Planétologie et d’Astrophysique de Grenoble, CNRS, Univ. Genoble Alpes (France)
T. Moulin, Institut de Planétologie et d’Astrophysique de Grenoble, CNRS, Univ. Genoble Alpes (France)
Y. Magnard, Institut de Planétologie et d’Astrophysique de Grenoble, CNRS, Univ. Genoble Alpes (France)
P. Labeye, CEA-LETI Minatec (France)
V. Lapras, CEA-LETI Minatec (France)
A. Nolot, Institut de Planétologie et d’Astrophysique de Grenoble, CNRS, Univ. Genoble Alpes (France)
G. Perrin, Lab. d'Etudes Spatiales et d'Instrumentation en Astrophysique, CNRS, Observatoire de Paris à Meudon (France)
F. Eisenhauer, Max-Planck-Institut für extraterrestrische Physik (Germany)
C. Holmes, Univ. of Southampton (United Kingdom)
A. Amorim, Fundacão da Faculdade de Ciências da Univ. de Lisboa (Portugal)
W. Brandner, Max-Planck-Institut für Astronomie (Germany)
C. Straubmeier, Univ. zu Köln (Germany)


Published in SPIE Proceedings Vol. 9146:
Optical and Infrared Interferometry IV
Jayadev K. Rajagopal; Michelle J. Creech-Eakman; Fabien Malbet, Editor(s)

© SPIE. Terms of Use
Back to Top