Share Email Print

Proceedings Paper

Infrared light field imaging using single carbon nanotube detector
Author(s): Ning Xi; Liangliang Chen; Zhanxin Zhou; Ruiguo Yang; Bo Song; Zhiyong Sun
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The conventional photographs only record the sum total of light rays of each point on image plane so that they tell little about the amount of light traveling along individual rays. The focus and lens aberration problems have challenged photographers since the very beginning therefore light field photography was proposed to solve these problems. Lens array and multiple camera systems are used to capture 4D light rays, by reordering the different views of scene from multiple directions. The coded aperture is another method to encode the angular information in frequency domain. However, infrared light field sensing is still widely opening to research. In the paper, we will propose micro plane mirror optics together with compressive sensing algorithm to record light field in infrared spectrum. The micro mirror reflects objects irradiation and forms a virtual image behind the plane in which the mirror lies. The Digital Micromirror (DMD) consists of millions microscale mirrors which work as CCD array in the camera and it is controlled separately so as to project linear combination of object image onto lens. Coded aperture could be utilized to control angular resolution of infrared light rays. The carbon nanotube based infrared detector, which has ultra high signal to noise ratio and ultra fast responsibility, will sum up all image information on it without image distortion. Based on a number of measurements, compressive sensing algorithm was used to recover images from distinct angles, which could compute different views of scene to reconstruct infrared light field scence. Two innovative applications of full image recovery using nano scale photodetector and DMD based synthetic aperture photography will also be discussed in this paper.

Paper Details

Date Published: 24 June 2014
PDF: 7 pages
Proc. SPIE 9070, Infrared Technology and Applications XL, 90700K (24 June 2014); doi: 10.1117/12.2053496
Show Author Affiliations
Ning Xi, Michigan State Univ. (United States)
Liangliang Chen, Michigan State Univ. (United States)
Zhanxin Zhou, Michigan State Univ. (United States)
Ruiguo Yang, Michigan State Univ. (United States)
Bo Song, Michigan State Univ. (United States)
Zhiyong Sun, Michigan State Univ. (United States)

Published in SPIE Proceedings Vol. 9070:
Infrared Technology and Applications XL
Bjørn F. Andresen; Gabor F. Fulop; Charles M. Hanson; Paul R. Norton, Editor(s)

© SPIE. Terms of Use
Back to Top