Share Email Print
cover

Proceedings Paper

Design of a nano-machined pyroelectric detector for low thermal conductance
Author(s): Md A. Muztoba; Noureddine Melikechi; Mukti M. Rana
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Pyroelectric detector is a class of thermal detector in which the change in temperature causes the change in the spontaneous polarization in the sensing material. In this work, we report the design of uncooled pyroelectric detectors which utilized a nanometer sized truss to support the suspended detector. The design and performance of pyroelectric detectors have been conducted by simulating the structure with Intellisuite™ utilizing Finite Element Method (FEM). The simulated detectors had a spider web-like structure with each of the strut of spider web had a width of 100 nm. Ca modified lead titanate (PCT) was employed as the thermometer because of its high pyroelectric figure of merit. The pyroelectric detectors utilized Ni0.8Cr0.2 absorber, PCT sensing layer, Ti electrodes, Al2O3 structural layer to obtain low thermal conductance between the detector and Si substrate. Three different types of pyroelectric detectors were designed and analyzed. The first design had linear electrode and simple spider web support. The value of the thermal conductance of this detector was found to be 3.98×10-8 W/K. The second design had a longer thermal path than the first one and had a thermal conductivity of 2.41×10-8 W/K. The design was optimized for the best result by modifying the shape, dimension and thickness of various layers namely absorber, electrodes, sensing layer and struts. The thermal conductance of the third design was found to be as low as 4.57×10-9 W/K which is significantly lower than previously reported values. The highest calculated detectivity and reponsivity values were 1.15 × 1010 cm Hz1/2/W and 4.9 × 107 V/W respectively.

Paper Details

Date Published: 24 June 2014
PDF: 7 pages
Proc. SPIE 9070, Infrared Technology and Applications XL, 90701V (24 June 2014); doi: 10.1117/12.2053466
Show Author Affiliations
Md A. Muztoba, Delaware State Univ. (United States)
Noureddine Melikechi, Delaware State Univ. (United States)
Mukti M. Rana, Delaware State Univ. (United States)


Published in SPIE Proceedings Vol. 9070:
Infrared Technology and Applications XL
Bjørn F. Andresen; Gabor F. Fulop; Charles M. Hanson; Paul R. Norton, Editor(s)

© SPIE. Terms of Use
Back to Top