Share Email Print
cover

Proceedings Paper

High-speed 3D surface measurement with a fringe projection based optical sensor
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A new optical sensor based on fringe projection technique for the accurate and fast measurement of the surface of objects mainly for industrial inspection tasks is introduced. High-speed fringe projection and image recording with 180 Hz allows 3D rates up to 60 Hz. The high measurement velocity was achieved by consequent fringe code reduction and parallel data processing. Reduction of the image sequence length was obtained by omission of the Gray-code sequence by using the geometric restrictions of the measurement objects. The sensor realizes three different measurement fields between 20 x 20 mm2 and 40 x 40 mm2 with lateral spatial solutions between 10 μm and 20 μm with the same working distance. Measurement object height extension is between ± 0.5 mm and ± 2 mm. Height resolution between 1 μm and 5 μm can be achieved depending on the properties of the measurement objects. The sensor may be used e.g. for quality inspection of conductor boards or plugs in real-time industrial applications.

Paper Details

Date Published: 28 May 2014
PDF: 8 pages
Proc. SPIE 9110, Dimensional Optical Metrology and Inspection for Practical Applications III, 91100E (28 May 2014); doi: 10.1117/12.2053224
Show Author Affiliations
Christian Bräuer-Burchardt, Fraunhofer-Institut für Angewandte Optik und Feinmechanik (Germany)
Stefan Heist, Fraunhofer-Institut für Angewandte Optik und Feinmechanik (Germany)
Peter Kühmstedt, Fraunhofer-Institut für Angewandte Optik und Feinmechanik (Germany)
Gunther Notni, Fraunhofer-Institut für Angewandte Optik und Feinmechanik (Germany)


Published in SPIE Proceedings Vol. 9110:
Dimensional Optical Metrology and Inspection for Practical Applications III
Kevin G. Harding; Toru Yoshizawa, Editor(s)

© SPIE. Terms of Use
Back to Top