Share Email Print

Proceedings Paper

Diffuse reflectance and fluorescence multispectral imaging system for assessment of skin
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The diffuse reflectance multispectral imaging technique has been used for distant mapping of in vivo skin chromophores (hemoglobin and melanin). The fluorescence multispectral imaging is not so common for skin applications due to complicity of data acquisition and processing, but could provide additional information about skin fluorophores. Both techniques are compatible, and could be combined into a multimodal solution.

The multispectral imaging system Nuance based on liquid crystal tunable filters was adapted for diffuse reflectance and fluorescence spectral imaging of in vivo skin. Uniform illumination was achieved by LED ring light. Combination of four LEDs (warm white, 770 nm, 830 nm and 890 nm) was used to support diffuse reflectance mode in spectral range 450-950 nm. 405 nm LEDs were used for excitation of skin autofluorescence. Multispectral imaging system was adapted for spectral working range of 450-950 nm with scanning step of 10 nm and spectral resolution of 15 nm. An average field of view was 50x35 mm in size with spatial resolution 0,05 mm (the pixel size). Due to spectrally different illumination intensity and system sensitivity, various exposure times (from 7…500 ms) were used for each image acquisition.

The proposed approach was tested for different skin lesions: benign nevus, hemangioma, basalioma and halo nevus. Spectral image cubes of different skin lesions were acquired and analyzed to test its diagnostic potential.

Paper Details

Date Published: 8 May 2014
PDF: 6 pages
Proc. SPIE 9129, Biophotonics: Photonic Solutions for Better Health Care IV, 91293H (8 May 2014); doi: 10.1117/12.2052596
Show Author Affiliations
Inga Saknite, Univ. of Latvia (Latvia)
Dainis Jakovels, Univ. of Latvia (Latvia)
Janis Spigulis, Univ. of Latvia (Latvia)

Published in SPIE Proceedings Vol. 9129:
Biophotonics: Photonic Solutions for Better Health Care IV
Jürgen Popp; Valery V. Tuchin; Dennis L. Matthews; Francesco Saverio Pavone; Paul Garside, Editor(s)

© SPIE. Terms of Use
Back to Top