Share Email Print
cover

Proceedings Paper

Self-amplified CMOS image sensor using a current-mode readout circuit
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The feature size of the CMOS processes decreased during the past few years and problems such as reduced dynamic range have become more significant in voltage-mode pixels, even though the integration of more functionality inside the pixel has become easier. This work makes a contribution on both sides: the possibility of a high signal excursion range using current-mode circuits together with functionality addition by making signal amplification inside the pixel. The classic 3T pixel architecture was rebuild with small modifications to integrate a transconductance amplifier providing a current as an output. The matrix with these new pixels will operate as a whole large transistor outsourcing an amplified current that will be used for signal processing. This current is controlled by the intensity of the light received by the matrix, modulated pixel by pixel. The output current can be controlled by the biasing circuits to achieve a very large range of output signal levels. It can also be controlled with the matrix size and this permits a very high degree of freedom on the signal level, observing the current densities inside the integrated circuit. In addition, the matrix can operate at very small integration times. Its applications would be those in which fast imaging processing, high signal amplification are required and low resolution is not a major problem, such as UV image sensors. Simulation results will be presented to support: operation, control, design, signal excursion levels and linearity for a matrix of pixels that was conceived using this new concept of sensor.

Paper Details

Date Published: 15 May 2014
PDF: 7 pages
Proc. SPIE 9141, Optical Sensing and Detection III, 914128 (15 May 2014); doi: 10.1117/12.2052589
Show Author Affiliations
Patrick M. Santos, Univ. Federal de Minas Gerais (Brazil)
Ctr. Federal de Educação Tecnológica de Minas Gerais (Brazil)
Institut des Nanotechnologies de Lyon, CNRS (France)
Davies W. de Lima Monteiro, Ctr. Federal de Educação Tecnológica de Minas Gerais (Brazil)
Patrick Pittet, Institut des Nanotechnologies de Lyon, CNRS, Univ. de Lyon (France)
Institut National des Sciences Appliquées de Lyon, Univ. de Lyon (France)


Published in SPIE Proceedings Vol. 9141:
Optical Sensing and Detection III
Francis Berghmans; Anna G. Mignani; Piet De Moor, Editor(s)

© SPIE. Terms of Use
Back to Top