Share Email Print

Proceedings Paper

Chirality and polarization-dependent characteristics of dielectric single gyroid metamaterials
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Gyroid is a type of three-dimensional chiral structures, which have attracted much research attention recently. A dielectric single gyroid (SG) can be a candidate for providing new means of guiding light because it has been shown to exhibit complete photonic band gaps. Owing to the chiral nature, the SG metamaterials may exhibit circular polarization-dependent properties, leading to new types of polarization-sensitive devices. In this work, we present studies based on finite-difference time-domain (FDTD) method for analyzing the polarization-dependent characteristics of dielectric SG. We show that the operation frequency of SG metamaterials can be advanced from microwave to visible region by varying its material, lattice constant and volume fraction. The corresponding band structures, transmission spectra for right circularly polarized (RCP) light and left circularly polarized (LCP) light, and circular dichroism (CD) indices are examined. According to our analysis, a circular polarization gap is found in the visible region. In particular, the correlation between the volume fraction of dielectric SG and the frequency range of circular polarization band gaps is also investigated. These results are crucial for the design of functional polarization-sensitive devices at the visible wavelength based on dielectric single gyroid metamaterials.

Paper Details

Date Published: 2 May 2014
PDF: 6 pages
Proc. SPIE 9125, Metamaterials IX, 91250F (2 May 2014); doi: 10.1117/12.2051941
Show Author Affiliations
Lung-Yu Chang Chien, National Tsing Hua Univ. (Taiwan)
Yu-Chueh Hung, National Tsing Hua Univ. (Taiwan)

Published in SPIE Proceedings Vol. 9125:
Metamaterials IX
Allan D. Boardman; Nigel P. Johnson; Kevin F. MacDonald; Ekmel Özbay, Editor(s)

© SPIE. Terms of Use
Back to Top