Share Email Print
cover

Proceedings Paper

Longitudinal mode-filling to cancel SBS in fully-fibered MOPAs dedicated to the production of high-energy nanosecond pulses
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We present a comprehensive experimental study of the technique of Longitudinal Mode Filling (LMF) applied to the reduction of Stimulated Brillouin Scattering (SBS), in Ytterbium Doped Fibre Amplifiers (YDFA) at the wavelength of 1064 nm. Pulse durations and Mode Field Diameters (MFD) lie in the ranges of 10 - 100 ns and 10 - 35 μm, respectively. Input pulse-shaping is implemented by means of direct current modulation in multimode Laser-Diode seeds. This evidences a number of interests in the development of robust and low cost Master Oscillator Power Amplifiers (MOPA). Highly energetic, but properly shaped, nanosecond pulses may be produced this way without any need of additional electro-optical means for in-line phase and amplitude modulation. Seeds consist of Distributed Feed- Back (DFB) and Fibre Bragg Gratings (FBG) with different fibre lengths. We demonstrate the benefit of LMF with properly controlled mode spacing, in combination with chirp effects due to fast current transients in the semiconductors, in order to deal with SBS thresholds in the range of a few to some hundred μJ. The variations of the SBS threshold are discussed versus the number of longitudinal modes, the operating conditions of the selected seed and pulse-shaping conditions.

Paper Details

Date Published: 1 May 2014
PDF: 10 pages
Proc. SPIE 9136, Nonlinear Optics and Its Applications VIII; and Quantum Optics III, 913608 (1 May 2014); doi: 10.1117/12.2051782
Show Author Affiliations
A. Jolly, ALPHANOV, Institut d’Optique d’Aquitaine (France)
CEA-CESTA (France)
F. S. Gokhan, Hasan Kalyoncu Univ. (Turkey)
R. Bello, ALPHANOV, Institut d’Optique d’Aquitaine (France)
P. Dupriez, ALPHANOV, Institut d’Optique d’Aquitaine (France)


Published in SPIE Proceedings Vol. 9136:
Nonlinear Optics and Its Applications VIII; and Quantum Optics III
Benjamin J. Eggleton; Alexander V. Sergienko; Arno Rauschenbeutel; Alexander L. Gaeta; Neil G. R. Broderick; Thomas Durt, Editor(s)

© SPIE. Terms of Use
Back to Top