Share Email Print

Proceedings Paper

Multispectral photon counting integral imaging system for color visualization of photon limited 3D scenes
Author(s): Inkyu Moon
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper provides an overview of a colorful photon-counting integral imaging system using Bayer elemental images for 3D visualization of photon limited scenes. The color image sensor with a format of Bayer color filter array, i.e., a red, a green, or a blue filter in a repeating pattern, captures elemental image set of a photon limited three-dimensional (3D) scene. It is assumed that the observed photon count in each channel (red, green or blue) follows Poisson statistics. The reconstruction of 3D scene with a format of Bayer is obtained by applying computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator to the photon-limited Bayer elemental images. Finally, several standard demosaicing algorithms are applied in order to convert the 3D reconstruction with a Bayer format into a RGB per pixel format. Experimental results demonstrate that the gradient corrected linear interpolation technique achieves better performance in regard with acceptable PSNR and less computational complexity.

Paper Details

Date Published: 5 June 2014
PDF: 5 pages
Proc. SPIE 9117, Three-Dimensional Imaging, Visualization, and Display 2014, 91171D (5 June 2014); doi: 10.1117/12.2051726
Show Author Affiliations
Inkyu Moon, Chosun Univ. (Korea, Republic of)

Published in SPIE Proceedings Vol. 9117:
Three-Dimensional Imaging, Visualization, and Display 2014
Bahram Javidi; Jung-Young Son; Osamu Matoba; Manuel Martínez-Corral; Adrian Stern, Editor(s)

© SPIE. Terms of Use
Back to Top