Share Email Print
cover

Proceedings Paper

Local stereo matching using binary weighted normalized cross-correlation
Author(s): Tong Liu; Liyan Qiao; Xiyuan Peng
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Significant achievements have been attained in the field of dense stereo correspondence by local algorithms since the emergence of adaptive support weight by Yoon [1]. However, most algorithms suffer from photometric distortions and low-texture areas. In this paper, we present a novel stereo matching algorithm that can be sensitive to low-texture changes within support windows while keep insensitive to radiometric variations between left and right images. The algorithm performs Normalized Cross-Correlation with Binary Weighted support window (BWNCC) using k-nearest neighbors algorithm to resolve boundary problems. And, the proposed algorithm can be accelerated with transform domain convolution. We also propose to accelerate the BWNCC with transform domain computation. Experiment results confirm that the proposed method is robust, and has the comparable accuracy as the state-of-the-art.

Paper Details

Date Published: 24 December 2013
PDF: 6 pages
Proc. SPIE 9067, Sixth International Conference on Machine Vision (ICMV 2013), 90671J (24 December 2013); doi: 10.1117/12.2051674
Show Author Affiliations
Tong Liu, Harbin Institute of Technology (China)
Liyan Qiao, Harbin Institute of Technology (China)
Xiyuan Peng, Harbin Institute of Technology (China)


Published in SPIE Proceedings Vol. 9067:
Sixth International Conference on Machine Vision (ICMV 2013)
Branislav Vuksanovic; Antanas Verikas; Jianhong Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top