Share Email Print
cover

Proceedings Paper

Two-dimensional atomic crystals beyond graphene
Author(s): Anupama B. Kaul
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Carbon-based nanostructures have been the center of intense research and development for more than two decades now. Of these materials, graphene, a two-dimensional (2D) layered material system, has had a significant impact on science and technology over the past decade after monolayers of this material were experimentally isolated in 2004. The recent emergence of other classes of 2D graphene-like layered materials has added yet more exciting dimensions for research in exploring the diverse properties and applications arising from these 2D material systems. For example, hexagonal-BN, a layered material closest in structure to graphene, is an insulator, while NbSe2, a transition metal di-chalcogenide, is metallic and monolayers of other transition metal di-chalcogenides such as MoS2 are direct band-gap semiconductors. The rich spectrum of properties that 2D layered material systems offer can potentially be engineered ondemand, and creates exciting prospects for using such materials in applications ranging from electronics, sensing, photonics, energy harvesting and flexible electronics over the coming years.

Paper Details

Date Published: 9 June 2014
PDF: 6 pages
Proc. SPIE 9083, Micro- and Nanotechnology Sensors, Systems, and Applications VI, 908302 (9 June 2014); doi: 10.1117/12.2051428
Show Author Affiliations
Anupama B. Kaul, National Science Foundation (United States)


Published in SPIE Proceedings Vol. 9083:
Micro- and Nanotechnology Sensors, Systems, and Applications VI
Thomas George; M. Saif Islam; Achyut K. Dutta, Editor(s)

© SPIE. Terms of Use
Back to Top