Share Email Print

Proceedings Paper

Practical application of artificial neural networks in the neurosciences
Author(s): Antonio Pinti
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This article presents a practical application of artificial multi-layer perceptron (MLP) neural networks in neurosciences. The data that are processed are labeled data from the visual analysis of electrical signals of human sleep. The objective of this work is to automatically classify into sleep stages the electrophysiological signals recorded from electrodes placed on a sleeping patient. Two large data bases were designed by experts in order to realize this study. One data base was used to train the network and the other to test its generalization capacity. The classification results obtained with the MLP network were compared to a type K nearest neighbor Knn non-parametric classification method. The MLP network gave a better result in terms of classification than the Knn method. Both classification techniques were implemented on a transputer system. With both networks in their final configuration, the MLP network was 160 times faster than the Knn model in classifying a sleep period.

Paper Details

Date Published: 6 April 1995
PDF: 12 pages
Proc. SPIE 2492, Applications and Science of Artificial Neural Networks, (6 April 1995); doi: 10.1117/12.205130
Show Author Affiliations
Antonio Pinti, European Commission--Joint Research Ctr. (France)

Published in SPIE Proceedings Vol. 2492:
Applications and Science of Artificial Neural Networks
Steven K. Rogers; Dennis W. Ruck, Editor(s)

© SPIE. Terms of Use
Back to Top