Share Email Print

Proceedings Paper

Portable low-coherence interferometry for quantitatively imaging fast dynamics with extended field of view
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present our recent advances in the development of compact, highly portable and inexpensive wide-field interferometric modules. By a smart design of the interferometric system, including the usage of low-coherence illumination sources and common-path off-axis geometry of the interferometers, spatial and temporal noise levels of the resulting quantitative thickness profile can be sub-nanometric, while processing the phase profile in real time. In addition, due to novel experimentally-implemented multiplexing methods, we can capture low-coherence off-axis interferograms with significantly extended field of view and in faster acquisition rates. Using these techniques, we quantitatively imaged rapid dynamics of live biological cells including sperm cells and unicellular microorganisms. Then, we demonstrated dynamic profiling during lithography processes of microscopic elements, with thicknesses that may vary from several nanometers to hundreds of microns. Finally, we present new algorithms for fast reconstruction (including digital phase unwrapping) of off-axis interferograms, which allow real-time processing in more than video rate on regular single-core computers.

Paper Details

Date Published: 5 June 2014
PDF: 8 pages
Proc. SPIE 9117, Three-Dimensional Imaging, Visualization, and Display 2014, 911709 (5 June 2014); doi: 10.1117/12.2051285
Show Author Affiliations
Natan T. Shaked, Tel Aviv Univ. (Israel)
Pinhas Girshovitz, Tel Aviv Univ. (Israel)
Irena Frenklach, Tel Aviv Univ. (Israel)

Published in SPIE Proceedings Vol. 9117:
Three-Dimensional Imaging, Visualization, and Display 2014
Bahram Javidi; Jung-Young Son; Osamu Matoba; Manuel Martínez-Corral; Adrian Stern, Editor(s)

© SPIE. Terms of Use
Back to Top