Share Email Print

Proceedings Paper

Improved designs for p-i-n OLEDs towards the minimal power loss of devices
Author(s): Dashan Qin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Currently, the low yield, high power loss, and poor stability of organic light emitting diodes (OLEDs) panels are remaining as the obstacles to the fast growth of the OLED industry, especially for the lighting application. The p-i-n OLEDs have been widely recognized as the promising method to circumvent these bottleneck factors, due to the unique merit of the electrical doping to enable low power loss. In p-i-n OLEDs, the frequently used n-doped electron transport layers (n-ETL1) such as n-BCP, n-Alq3 possess markedly lower conductivities but better capabilities of injecting electrons into ETL such as BCP, Alq3, as compared to another class of n-doped ETLs (n-ETL2), e.g., n-NTCDA, n-PTCDA, n-C60. Thus, in order to minimize the electron loss, we provide the structure of uniting two n-doped layers, cathode/ n-ETL2/ n-ETL1/ ETL. In p-i-n OLEDs, the hole current injected from the single p-doped hole transport layer (p-HTL) into the neat HTL must be limited, because the higher conductivity p-HTL has the higher lying highest occupied molecular orbital (HOMO) level, leading to a larger hole transport energy barrier (φB) at the interface with the neat HTL. Therefore, in order to minimize the hole loss, we suggest the structure of uniting two p-HTLs, anode/ p-HTL2/ p-HTL1/ HTL. The p-HTL2 possesses high-lying HOMO level and thereby high conductivity, decreasing the ohmic loss in the hole conduction; the p-HTL1 features a low-lying HOMO level, reducing the φB.

Paper Details

Date Published: 1 May 2014
PDF: 9 pages
Proc. SPIE 9137, Organic Photonics VI, 91370K (1 May 2014); doi: 10.1117/12.2051210
Show Author Affiliations
Dashan Qin, Hebei Univ. of Technology (China)
Lucky Huaguang Graphics Co., Ltd. (China)

Published in SPIE Proceedings Vol. 9137:
Organic Photonics VI
Barry P. Rand; Chihaya Adachi; David Cheyns; Volker van Elsbergen, Editor(s)

© SPIE. Terms of Use
Back to Top