Share Email Print

Proceedings Paper

Monitoring of resin transfer in CFRP molding using 3D-DIC technique
Author(s): Dingding Chen; Kazuo Arakawa; Masakazu Uchino
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Vacuum-assisted resin transfer molding (VARTM) is a manufacturing process that is used to make large and complex composite structures. While promising, VARTM still suffers from relatively low fiber volume fractions and high void content in the final products. The infusion step of VARTM is very important, because the quality of the final product is usually decided by this process. Consequently, a comprehensive understanding of the infusion process is essential. In this study, a three-dimensional digital image correlation (3D-DIC) testing system was set up to research the entire infusion process through the monitor of the thickness change of the laminates in this process. Two distinct VARTM processes, with and without a rigid cover mold, were designed to be studied. The 3D-DIC technique proved to be a valid method that not only can monitor the thickness evolution of isolated points but also can give a full-field distribution of the thickness change of the laminate. The results showed that, without the use of a rigid cover mold, the stack of reinforcements initially shrank and then expanded as the resin filled the cavities before closing the inlet, while when using a rigid cover mold there was an additional expansion period before the shrinkage occurred. Such an expansion stage could promote the flow of the resin, shortening the infusion time.

Paper Details

Date Published: 2 June 2014
PDF: 7 pages
Proc. SPIE 9234, International Conference on Experimental Mechanics 2013 and Twelfth Asian Conference on Experimental Mechanics, 923405 (2 June 2014); doi: 10.1117/12.2051136
Show Author Affiliations
Dingding Chen, Kyushu Univ. (Japan)
Kazuo Arakawa, Kyushu Univ. (Japan)
Masakazu Uchino, Fukuoka Industrial Technology Ctr. (Japan)

Published in SPIE Proceedings Vol. 9234:
International Conference on Experimental Mechanics 2013 and Twelfth Asian Conference on Experimental Mechanics
Somnuk Sirisoonthorn, Editor(s)

© SPIE. Terms of Use
Back to Top