Share Email Print
cover

Proceedings Paper

Acoustic resonance in MEMS scale cylindrical tubes with side branches
Author(s): John F. Schill; Ellen L. Holthoff; Paul M. Pellegrino; Logan S. Marcus
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace gas detection. This method routinely exhibits detection limits at the parts-per-million (ppm) or parts-per-billion (ppb) level for gaseous samples. PAS also possesses favorable detection characteristics when the system dimensions are scaled to a microelectromechanical system (MEMS) design. One of the central issues related to sensor miniaturization is optimization of the photoacoustic cell geometry, especially in relationship to high acoustical amplification and reduced system noise. Previous work relied on a multiphysics approach to analyze the resonance structures of the MEMS scale photo acoustic cell. This technique was unable to provide an accurate model of the acoustic structure. In this paper we describe a method that relies on techniques developed from musical instrument theory and electronic transmission line matrix methods to describe cylindrical acoustic resonant cells with side branches of various configurations. Experimental results are presented that demonstrate the ease and accuracy of this method. All experimental results were within 2% of those predicted by this theory.

Paper Details

Date Published: 10 June 2014
PDF: 15 pages
Proc. SPIE 9073, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV, 90730E (10 June 2014); doi: 10.1117/12.2050543
Show Author Affiliations
John F. Schill, U.S. Army Research Lab. (United States)
Ellen L. Holthoff, U.S. Army Research Lab. (United States)
Paul M. Pellegrino, U.S. Army Research Lab. (United States)
Logan S. Marcus, U.S. Army Research Lab. (United States)


Published in SPIE Proceedings Vol. 9073:
Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV
Augustus Way Fountain, Editor(s)

© SPIE. Terms of Use
Back to Top