Share Email Print

Proceedings Paper

Hyperspectral target detection using graph theory models and manifold geometry via an adaptive implementation of locally linear embedding
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Hyperspectral images comprise, by design, high dimensional image data. However, research has shown that for a d-dimensional hyperspectral image, it is typical for the data to inherently occupy an m-dimensional space, with m << d. In the remote sensing community, this has led to a recent increase in the use of non-linear manifold learning, which aims to characterize the embedded lower-dimensional, non-linear manifold upon which the hyperspectral data inherently lie. Classic hyperspectral data models include statistical, linear subspace, and linear mixture models, but these can place restrictive assumptions on the distribution of the data. With graph theory and manifold learning based models, the only assumption is that the data reside on an underlying manifold. In previous publications, we have shown that manifold coordinate approximation using locally linear embedding (LLE) is a viable pre-processing step for target detection with the Adaptive Cosine/Coherence Estimator (ACE) algorithm. Here, we improve upon that methodology using a more rigorous, data-driven implementation of LLE that incorporates the injection of a cloud" of target pixels and the Spectral Angle Mapper (SAM) detector. The LLE algorithm, which holds that the data is locally linear, is typically governed by a user defined parameter k, indicating the number of nearest neighbors to use in the initial graph model. We use an adaptive approach to building the graph that is governed by the data itself and does not rely upon user input. This implementation of LLE can yield greater separation between the target pixels and the background pixels in the manifold space. We present an analysis of target detection performance in the manifold coordinates using scene-derived target spectra and laboratory-measured target spectra across two different data sets.

Paper Details

Date Published: 13 June 2014
PDF: 14 pages
Proc. SPIE 9088, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, 90880B (13 June 2014); doi: 10.1117/12.2050382
Show Author Affiliations
Amanda K. Ziemann, Rochester Institute of Technology (United States)
David W. Messinger, Rochester Institute of Technology (United States)

Published in SPIE Proceedings Vol. 9088:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX
Miguel Velez-Reyes; Fred A. Kruse, Editor(s)

© SPIE. Terms of Use
Back to Top