Share Email Print
cover

Proceedings Paper

Characterization of carbon fiber composite materials for RF applications
Author(s): Elliot J. Riley; Erik H. Lenzing; Ram M. Narayanan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Carbon Fiber Composite (CFC) materials have been used for decades in the aerospace, automotive, and naval industries. They have often been used because of their mechanical advantages. These advantageous characteristics have typically included low weight and high strength. It is also a benefit that CFC materials can be made into nearly any shape or size. With the abundant use of CFC materials, it seems desirable to better under- stand the electromagnetic applications of these materials. CFC materials consist of a non-conductive resin or epoxy in addition to conductive carbon fibers. The carbon fibers can be oriented and layered in many different configurations. The specific orientation and layering of the carbon fibers has a direct impact on its electrical characteristics. One specific characteristic of interest is the conductivity of CFC materials. The work in this paper deals with probing the conductivity characteristics of CFC materials for applications in antenna and radar design. Multiple layouts of carbon fiber are investigated. The DC conductivity was measured by applying a conductive epoxy to sample edges and using a milliohm meter. Shielding effectiveness was then predicted based on fundamental electromagnetics for conducting media. Finally, prototype dipole antennas made from CFC materials were investigated.

Paper Details

Date Published: 29 May 2014
PDF: 12 pages
Proc. SPIE 9077, Radar Sensor Technology XVIII, 907704 (29 May 2014); doi: 10.1117/12.2050132
Show Author Affiliations
Elliot J. Riley, The Pennsylvania State Univ. (United States)
Erik H. Lenzing, The Pennsylvania State Univ. (United States)
Ram M. Narayanan, The Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 9077:
Radar Sensor Technology XVIII
Kenneth I. Ranney; Armin Doerry, Editor(s)

© SPIE. Terms of Use
Back to Top