Share Email Print

Proceedings Paper

Ensemble classifier using GRG algorithm for land cover classification
Author(s): Bolanle T. Abe; J. A. Jordaan; Tshilidzi Marwala
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Image processing is of great value because it enables satellite images to be translated into useful information. The preprocessing of remotely sensed images before features extraction is important to remove noise and improve the ability to interpret image data more accurately. All images should appear as if they were acquired from the same sensor at the end of image preprocessing. A major challenge associated with hyperspectral imagery in remote sensing analysis is the mixed pixels which are due to huge dimension nature of the data. This study makes a positive contribution to the problem of land cover classification by exploring Generalized Reduced Gradient (GRG) algorithm on hyperspectral datasets by using Washington DC mall and Indiana pines test site of Northwestern Indiana, USA as study sites. The algorithm was used to estimate the fractional abundance in the datasets for land cover classification. Ensemble classifiers such as random forest, bagging and support vector machines were implemented in Waikato Environment for knowledge Analysis (WEKA) to carry out the classification procedures. Experimental results show that random forest ensemble outperformed the other ensemble methods. The comparison of the classifiers is crucial for a decision maker to consider compromises in accuracy technique against complexity technique.

Paper Details

Date Published: 24 December 2013
PDF: 6 pages
Proc. SPIE 9067, Sixth International Conference on Machine Vision (ICMV 2013), 90670O (24 December 2013); doi: 10.1117/12.2050094
Show Author Affiliations
Bolanle T. Abe, Tshwane Univ. of Technology (South Africa)
J. A. Jordaan, Tshwane Univ. of Technology (South Africa)
Tshilidzi Marwala, Univ. of Johannesburg (South Africa)

Published in SPIE Proceedings Vol. 9067:
Sixth International Conference on Machine Vision (ICMV 2013)
Branislav Vuksanovic; Antanas Verikas; Jianhong Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top