Share Email Print
cover

Proceedings Paper

Lambda Vision
Author(s): Michael Czajkowski
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

There is an explosion in the quantity and quality of IMINT data being captured in Intelligence Surveillance and Reconnaissance (ISR) today. While automated exploitation techniques involving computer vision are arriving, only a few architectures can manage both the storage and bandwidth of large volumes of IMINT data and also present results to analysts quickly. Lockheed Martin Advanced Technology Laboratories (ATL) has been actively researching in the area of applying Big Data cloud computing techniques to computer vision applications. This paper presents the results of this work in adopting a Lambda Architecture to process and disseminate IMINT data using computer vision algorithms. The approach embodies an end-to-end solution by processing IMINT data from sensors to serving information products quickly to analysts, independent of the size of the data. The solution lies in dividing up the architecture into a speed layer for low-latent processing and a batch layer for higher quality answers at the expense of time, but in a robust and fault-tolerant way. This approach was evaluated using a large corpus of IMINT data collected by a C-130 Shadow Harvest sensor over Afghanistan from 2010 through 2012. The evaluation data corpus included full motion video from both narrow and wide area field-of-views. The evaluation was done on a scaled-out cloud infrastructure that is similar in composition to those found in the Intelligence Community. The paper shows experimental results to prove the scalability of the architecture and precision of its results using a computer vision algorithm designed to identify man-made objects in sparse data terrain.

Paper Details

Date Published: 19 June 2014
PDF: 13 pages
Proc. SPIE 9089, Geospatial InfoFusion and Video Analytics IV; and Motion Imagery for ISR and Situational Awareness II, 90890S (19 June 2014); doi: 10.1117/12.2049997
Show Author Affiliations
Michael Czajkowski, Lockheed Martin Corp. (United States)


Published in SPIE Proceedings Vol. 9089:
Geospatial InfoFusion and Video Analytics IV; and Motion Imagery for ISR and Situational Awareness II
Matthew F. Pellechia; Kannappan Palaniappan; Shiloh L. Dockstader; Paul B. Deignan; Peter J. Doucette; Donnie Self, Editor(s)

© SPIE. Terms of Use
Back to Top