Share Email Print

Proceedings Paper

Characterization of ultrathin oxide-based multilayer SERS nanoprobes for intracellular sensing
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Photonic nanosensors (e.g. PEBBLES, quantum dots-based sensors, etc.) have begun to allow the study of these previously inaccessible environments. Unfortunately, many current techniques suffer from biocompatibility issues, limited ability to monitor multiple species simultaneously and/or complicated fabrication chemistries. Recently SERS immuno-nanoprobes have demonstrated the capability to overcome many of these limitations. Such intracellular SERS nanosensors require optimized substrate geometry to achieve the sensitivity necessary to detect the trace analyte concentrations present. To address this, we have developed a novel multilayered SERS substrate nanoarchitecture that is capable of enhancing SERS signals by over two orders of magnitude relative to comparable single layer substrates. These structures are fabricated using different deposition techniques (PVD, ALD, etc) in which multiple films of Ag (between 10-125 nm thick) are alternately deposited with ultrathin dielectric layers (tens of Å). This geometry allows surface plasmons from different metal layers to be generated. The resulting multilayer enhancement increases the sensitivity while also improving the robustness of the nanoprobes. In this paper, we investigate and characterize SERS immuno-nanoprobes fabricated using this multilayered geometry and discuss the effect of the dielectric spacer (Ag2O, TiO2, Ta2O5) work functions and conductive band offsets on the multilayer enhancement.

Paper Details

Date Published: 22 May 2014
PDF: 10 pages
Proc. SPIE 9107, Smart Biomedical and Physiological Sensor Technology XI, 910708 (22 May 2014); doi: 10.1117/12.2049955
Show Author Affiliations
Pietro Strobbia, Univ. of Maryland, Baltimore County (United States)
Brian M. Cullum, Univ. of Maryland, Baltimore County (United States)

Published in SPIE Proceedings Vol. 9107:
Smart Biomedical and Physiological Sensor Technology XI
Brian M. Cullum; Eric S. McLamore, Editor(s)

© SPIE. Terms of Use
Back to Top