Share Email Print

Proceedings Paper

Robust matching of SIFT keypoints via adaptive distance ratio thresholding
Author(s): Liang Mi; Yu Qiao; Jie Yang; Li Bai
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents a robust method to search for the correct SIFT keypoint matches with adaptive distance ratio threshold. Firstly, the reference image is analyzed by extracting some characteristics of its SIFT keypoints, such as their distance to the object boundary and the number of their neighborhood keypoints. The matching credit of each keypoint is evaluated based on its characteristics. Secondly, an adaptive distance ratio threshold for the keypoint is determined based on its matching credit to identify the correctness of its best match in the source image. The adaptive threshold loosens the matching conditions for keypoints of high matching credits and tightens the conditions for those of low matching credits. Our approach improves the scheme of SIFT keypoint matching by applying adaptive distance ratio threshold rather than global threshold that ignores different matching credits of various keypoints. The experiment results show that our algorithm outperforms the standard SIFT matching method in some complicated cases of object recognition, in which it discards more false matches as well as preserves more correct matches.

Paper Details

Date Published: 24 December 2013
PDF: 5 pages
Proc. SPIE 9067, Sixth International Conference on Machine Vision (ICMV 2013), 90670I (24 December 2013); doi: 10.1117/12.2049905
Show Author Affiliations
Liang Mi, Shanghai Jiao Tong Univ. (China)
Yu Qiao, Shanghai Jiao Tong Univ. (China)
Jie Yang, Shanghai Jiao Tong Univ. (China)
Li Bai, The Univ. of Nottingham (United Kingdom)

Published in SPIE Proceedings Vol. 9067:
Sixth International Conference on Machine Vision (ICMV 2013)
Branislav Vuksanovic; Antanas Verikas; Jianhong Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top