Share Email Print
cover

Proceedings Paper

Limitations of resist-based characterization of EUV mask surface roughness
Author(s): Suchit Bhattarai; Andrew R. Neureuther; Patrick P. Naulleau
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The feasibility of wafer-plane measurements of EUV mask surface roughness has been analyzed through stochastic resist simulations at various defocus conditions, for mask surface roughness values ranging between 50 pm and 500 pm rms. With partial coherence of 0.5, NA of 0.25, defocus of 100 nm and mask surface roughness of 50 pm rms, 1.3% of the total resist LER is contributed by the mask surface roughness induced aerial image phase roughness, while 39.1% of the total LER contribution comes from the absorbed photon image. 31.4% of the LER contribution is from the acid image and 27.9% is attributable to the quencher image at the end of the PEB reaction/diffusion processes. For surface roughness values of interest ranging between 50 pm and 150 pm rms, partial coherence of 0.5 and 100 nm defocus, the sensitivity of wafer plane aerial image LER to mask surface roughness is 9.5 nm/nm-rms, while the resist LER sensitivity is 2.9 nm/nm-rms. With hypothetical scaling of the resist parameters, the resist LER sensitivity to mask surface roughness increases to 6 nm/nm-rms.

Paper Details

Date Published: 17 April 2014
PDF: 8 pages
Proc. SPIE 9048, Extreme Ultraviolet (EUV) Lithography V, 904837 (17 April 2014); doi: 10.1117/12.2048249
Show Author Affiliations
Suchit Bhattarai, Univ. of California, Berkeley (United States)
Lawrence Berkeley National Lab. (United States)
Andrew R. Neureuther, Univ. of California, Berkeley (United States)
Lawrence Berkeley National Lab. (United States)
Patrick P. Naulleau, Lawrence Berkeley National Lab. (United States)


Published in SPIE Proceedings Vol. 9048:
Extreme Ultraviolet (EUV) Lithography V
Obert R. Wood; Eric M. Panning, Editor(s)

© SPIE. Terms of Use
Back to Top