Share Email Print
cover

Proceedings Paper

Molecular glass resists for scanning probe lithography
Author(s): Christian Neuber; Andreas Ringk; Tristan Kolb; Florian Wieberger; Peter Strohriegl; Hans-Werner Schmidt; Vincent Fokkema; Mike Cooke; Colin Rawlings; Urs Dürig; Armin W. Knoll; Jean-Francois de Marneffe; Peter De Schepper; Marcus Kaestner; Yana Krivoshapkina; Matthias Budden; Ivo W. Rangelow
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The presented work deals with molecular glass resist materials based on (i) calix[4]resorcinarene resist systems, (ii) twisted fully aromatic biscarbazole-biphenyl materials, and (iii) fully aromatic spiro resist materials as new promising materials for Scanning Probe Lithography (SPL). Because of the non-chemically amplified resist nature and the absence of corresponding material diffusion, the novel SPL resists have the potential to increase the patterning resolution capabilities at a simultaneous reduction of the edge roughness (LER). In addition, these low molecular weight molecular glasses offer the advantage of solvent-free film preparation by physical vapor deposition (PVD). The PVD prepared films offer a number of advantages compared to spin coated ones such as no more pinholes, defects, or residual solvent domains, which can locally affect the film properties. These high-quality PVD films are ideal candidates for the direct patterning by SPL tools. Presented highlights are the thermal scanning probe lithography (tSPL) investigations at IBM Research - Zurich and the patterning by using electric field, current controlled scanning probe lithography (EF-CC-SPL) at the Technical University of Ilmenau. Further investigations on film forming behavior, etch resistance, and etch transfer are presented. Owing to the high-resolution probe based patterning capability in combination with their improved etch selectivity compared to reference polymeric resists the presented molecular glass resists are highly promising candidates for lithography at the single nanometer digit level.

Paper Details

Date Published: 28 March 2014
PDF: 9 pages
Proc. SPIE 9049, Alternative Lithographic Technologies VI, 90491V (28 March 2014); doi: 10.1117/12.2047108
Show Author Affiliations
Christian Neuber, Univ. Bayreuth (Germany)
Andreas Ringk, Univ. Bayreuth (Germany)
Tristan Kolb, Univ. Bayreuth (Germany)
Florian Wieberger, Univ. Bayreuth (Germany)
Peter Strohriegl, Univ. Bayreuth (Germany)
Hans-Werner Schmidt, Univ. Bayreuth (Germany)
Vincent Fokkema, VSL Dutch Metrology Institute (Netherlands)
Mike Cooke, Oxford Instruments (United Kingdom)
Colin Rawlings, IBM Research – Zürich (Switzerland)
Urs Dürig, IBM Research – Zürich (Switzerland)
Armin W. Knoll, IBM Research – Zürich (Switzerland)
Jean-Francois de Marneffe, IMEC (Belgium)
Peter De Schepper, IMEC (Belgium)
Katholieke Univ. Leuven (Belgium)
Marcus Kaestner, Technische Univ. Ilmenau (Germany)
Yana Krivoshapkina, Technische Univ. Ilmenau (Germany)
Matthias Budden, Technische Univ. Ilmenau (Germany)
Ivo W. Rangelow, Technische Univ. Ilmenau (Germany)


Published in SPIE Proceedings Vol. 9049:
Alternative Lithographic Technologies VI
Douglas J. Resnick; Christopher Bencher, Editor(s)

© SPIE. Terms of Use
Back to Top