Share Email Print

Proceedings Paper

A participatory sensing approach to characterize ride quality
Author(s): Raj Bridgelall
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Rough roads increase vehicle operation and road maintenance costs. Consequently, transportation agencies spend a significant portion of their budgets on ride-quality characterization to forecast maintenance needs. The ubiquity of smartphones and social media, and the emergence of a connected vehicle environment present lucrative opportunities for cost-reduction and continuous, network-wide, ride-quality characterization. However, there is a lack of models to transform inertial and position information from voluminous data flows into indices that transportation agencies currently use. This work expands on theories of the Road Impact Factor introduced in previous research. The index characterizes road roughness by aggregating connected vehicle data and reporting roughness in direct proportion to the International Roughness Index. Their theoretical relationships are developed, and a case study is presented to compare the relative data quality from an inertial profiler and a regular passenger vehicle. Results demonstrate that the approach is a viable alternative to existing models that require substantially more resources and provide less network coverage. One significant benefit of the participatory sensing approach is that transportation agencies can monitor all network facilities continuously to locate distress symptoms, such as frost heaves, that appear and disappear between ride assessment cycles. Another benefit of the approach is continuous monitoring of all high-risk intersections such as rail grade crossings to better understand the relationship between ride-quality and traffic safety.

Paper Details

Date Published: 8 March 2014
PDF: 14 pages
Proc. SPIE 9061, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014, 90610A (8 March 2014); doi: 10.1117/12.2046854
Show Author Affiliations
Raj Bridgelall, North Dakota State Univ. (United States)

Published in SPIE Proceedings Vol. 9061:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014
Jerome P. Lynch; Kon-Well Wang; Hoon Sohn, Editor(s)

© SPIE. Terms of Use
Back to Top