Share Email Print
cover

Proceedings Paper

Printing nanotube/nanowire for flexible microsystems
Author(s): Ryan P. Tortorich; Jin-Woo Choi
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Printing has become an emerging manufacturing technology for mechanics, electronics, and consumer products. Additionally, both nanotubes and nanowires have recently been used as materials for sensors and electrodes due to their unique electrical and mechanical properties. Printed electrodes and conductive traces particularly offer versatility of fabricating low-cost, disposable, and flexible electrical devices and microsystems. While various printing methods such as screen printing have been conventional methods for printing conductive traces and electrodes, inkjet printing has recently attracted great attention due to its unique advantages including no template requirement, rapid printing at low cost, on-demand printing capability, and precise control of the printed material. Computer generated conductive traces or electrode patterns can simply be printed on a thin film substrate with proper conductive ink consisting of nanotubes or nanowires. However, in order to develop nanotube or nanowire ink, there are a few challenges that need to be addressed. The most difficult obstacle to overcome is that of nanotube/nanowire dispersion within a solution. Other challenges include adjusting surface tension and controlling viscosity of the ink as well as treating the surface of the printing substrate. In an attempt to pave the way for nanomaterial inkjet printing, we present a method for preparing carbon nanotube ink as well as its printing technique. A fully printed electrochemical sensor using inkjet-printed carbon nanotube electrodes is also demonstrated as an example of the possibilities for this technology.

Paper Details

Date Published: 16 April 2014
PDF: 7 pages
Proc. SPIE 9060, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2014, 90600Y (16 April 2014); doi: 10.1117/12.2046581
Show Author Affiliations
Ryan P. Tortorich, Louisiana State Univ. (United States)
Jin-Woo Choi, Louisiana State Univ. (United States)


Published in SPIE Proceedings Vol. 9060:
Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2014
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top