Share Email Print
cover

Proceedings Paper

Patch antenna based temperature sensor
Author(s): Hao Jiang; Jeremiah Sanders; Jun Yao; Haiying Huang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, we studied the microstrip patch antenna for the purpose of temperature sensing. The relationship between the antenna resonant frequency shift and temperature variation is first derived based on the transmission line model. A substrate material was selected to achieve a linear sensor response. Temperature chamber tests on patch antenna sensors bonded to three different test samples were carried out. Preliminary experimental results indicated a linear relation between the normalized antenna resonant frequency changes and temperature variations. However, a large discrepancy between the measured and predicted sensitivities was observed, which indicated that the thermal strain might have a significant influence on the dielectric constant of the substrate. To account for this effect, we introduced a strain coefficient of dielectric constant to quantify the effect of strain on the dielectric constant. With the modified theoretical predictions, the errors between the measurements and predictions were within the systematic error of the reference thermocouple, which validates the feasibility of using a microstrip patch antenna for temperature sensing.

Paper Details

Date Published: 10 April 2014
PDF: 9 pages
Proc. SPIE 9063, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2014, 90631P (10 April 2014); doi: 10.1117/12.2046427
Show Author Affiliations
Hao Jiang, Univ. of Texas at Arlington (United States)
Jeremiah Sanders, Univ. of Texas at Arlington (United States)
Jun Yao, Univ. of Texas at Arlington (United States)
Haiying Huang, Univ. of Texas at Arlington (United States)


Published in SPIE Proceedings Vol. 9063:
Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2014
H. Felix Wu; Tzu-Yang Yu; Andrew L. Gyekenyesi; Peter J. Shull, Editor(s)

© SPIE. Terms of Use
Back to Top