Share Email Print

Proceedings Paper

New techniques in large scale metrology toolset data mining to accelerate integrated chip technology development and increase manufacturing efficiencies
Author(s): Eric Solecky; Narender Rana; Allan Minns; Carol Gustafson; Patrick Lindo; Roger Cornell; Paul Llanos
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Today, metrology toolsets report out more information than ever. This information applies not only to process performance but also metrology toolset and recipe performance through various diagnostic metrics. This is most evident on the Critical Dimension Scanning Electron Microscope (CD-SEM). Today state of the art CD-SEMs report out over 250 individual data points and several images per measurement. It is typical for a state of the art fab with numerous part numbers to generate at least 20TB of information over the course of a year on the CD-SEM fleet alone pushing metrology toolsets into the big data regime. Most of this comes from improvements in throughput, increased sampling and new data outputs relative to previous generations of tools. Oftentimes, these new data outputs are useful for helping to determine if the process, metrology recipe or tool is deviating from an ideal state. Many issues could be missed by singularly looking at the key process control metric like the bottom critical dimension (CD) or a small subset of this available information. By leveraging the entire data set the mean time to detect and finding the root cause of issues can be significantly reduced. In this paper a new data mining system is presented that achieves this goal. Examples are shown with a focus on the benefits realized using this new system which helps speed up development cycles of learning and reducing manufacturing cycle-time. This paper concludes discussing future directions to make this capability more effective.

Paper Details

Date Published: 2 April 2014
PDF: 11 pages
Proc. SPIE 9050, Metrology, Inspection, and Process Control for Microlithography XXVIII, 905006 (2 April 2014); doi: 10.1117/12.2046274
Show Author Affiliations
Eric Solecky, IBM Systems and Technology Group (United States)
Narender Rana, IBM Systems and Technology Group (United States)
Allan Minns, IBM Systems and Technology Group (United States)
Carol Gustafson, IBM Systems and Technology Group (United States)
Patrick Lindo, IBM Systems and Technology Group (United States)
Roger Cornell, Applied Materials, Inc. (United States)
Paul Llanos, Applied Materials, Inc. (United States)

Published in SPIE Proceedings Vol. 9050:
Metrology, Inspection, and Process Control for Microlithography XXVIII
Jason P. Cain; Martha I. Sanchez, Editor(s)

© SPIE. Terms of Use
Back to Top