Share Email Print
cover

Proceedings Paper

Robust complementary technique with multiple-patterning for sub-10 nm node device
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Extreme ultraviolet (EUV) lithography is the leading candidate for sub-20nm half-pitch (hp) patterning solution, but the development of a high-output light source is still in progress thereby delaying the adoption of EUV for mass production. The evolution of 193nm immersion lithography-an exposure technology currently used in the mass production of all advanced devices-must therefore be extended, and to this end, self-aligned multiple patterning (SAMP) processes have come to be used to achieve further down scaling. To date, we have demonstrated the effectiveness of self-aligned double patterning (SADP) and self-aligned quadruple patterning (SAQP) as innovative processes and have reported on world-first scaling results at SPIE on several occasions. However, for critical layers in FinFET devices that presume a 1D cell design, there is also a need not just for the scaling of grating patterns but also for line-cutting techniques (grating and cutting). Under the theme of existing- technology extension to sub-10nm logic nodes, this paper presents the potential solutions of sub-10nm hp resolution by self-aligned octuple patterning (SAOP) and discusses the limits of shrink technology in cutting patterns.

Paper Details

Date Published: 27 March 2014
PDF: 9 pages
Proc. SPIE 9051, Advances in Patterning Materials and Processes XXXI, 90510V (27 March 2014); doi: 10.1117/12.2046236
Show Author Affiliations
Kenichi Oyama, Tokyo Electron Ltd. (Japan)
Shohei Yamauchi, Tokyo Electron Ltd. (Japan)
Sakurako Natori, Tokyo Electron Ltd. (Japan)
Arisa Hara, Tokyo Electron Ltd. (Japan)
Masatoshi Yamato, Tokyo Electron Ltd. (Japan)
Hidetami Yaegashi, Tokyo Electron Ltd. (Japan)


Published in SPIE Proceedings Vol. 9051:
Advances in Patterning Materials and Processes XXXI
Thomas I. Wallow; Christoph K. Hohle, Editor(s)

© SPIE. Terms of Use
Back to Top