Share Email Print
cover

Proceedings Paper

Shock and vibration control systems using a self-sensing magnetorheological damper
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The theoretical analysis and the prototype testing of the integrated relative displacement self-sensing magnetorheological damper (IRDSMRD) indicate that the controllable damping force performance and the relative displacement sensing performance influence each other for varying applied currents. Aiming at verifying the feasibility and capability of the IRDSMRD to constitute semi-active shock and vibration control systems, this study presents a single-degree-of-freedom (SDOF) shock and vibration control system based on the IRDSMRD. The mathematical model of the IRDSMRD, including the control damping force and the linearity of the integrated relative displacement sensor (IRDS), is established, and the governing equation for the SDOF system based on the IRDSMRD is derived. A skyhook control algorithm is utilized to improve the shock and vibration control performance of the SDOF semi-active control systems. The simulated control performances of the SDOF systems individually using the IRDSMRD without any extra-set dynamic sensor, the conventional MR damper with a linear variable differential transformer (LVDT), and the passive damper, under shock loads due to vertical pulses (the maximum initial velocity is as high as 10 m/s), and sinusoidal vibrations with a frequency range of 0-25 Hz, are evaluated, compared, and analyzed.

Paper Details

Date Published: 1 April 2014
PDF: 11 pages
Proc. SPIE 9057, Active and Passive Smart Structures and Integrated Systems 2014, 905734 (1 April 2014); doi: 10.1117/12.2045259
Show Author Affiliations
Xian-Xu Bai, Hefei Univ. of Technology (China)
Chongqing Univ. (China)
Dai-Hua Wang, Chongqing Univ. (China)


Published in SPIE Proceedings Vol. 9057:
Active and Passive Smart Structures and Integrated Systems 2014
Wei-Hsin Liao, Editor(s)

© SPIE. Terms of Use
Back to Top