Share Email Print

Proceedings Paper

A new extension of unscented Kalman filter for structural health assessment with unknown input
Author(s): Abdullah Al-Hussein; Achintya Haldar
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A time-domain nonlinear system identification (SI)-based structural health assessment (SHA) procedure, using Unscented Kalman Filter (UKF) concept, is presented in this paper. It is a two-stage procedure. It integrates an iterative least squares technique and the unscented Kalman filter concept. The authors believe that the integrated procedure significantly improves the basic UKF concept. The procedure can assess the health of a structure using only a limited number of noise-contaminated acceleration time-histories measured only at a small part of a structure and does not need information on input excitation. The structures are represented by finite element models and the location and severity of defect(s) are assessed by tracking the changes in the stiffness properties of individual elements from their expected values. With the help of examples, it is demonstrated that the method is capable of accurately identifying defect-free and defective states of structures. Small and relatively large defects are introduced at different locations in the structure and the capability of the method to detect the health of the structure is examined. It is demonstrated that the accuracy of the method is much better than the other methods currently available for the structural health assessment. It is also superior to the extended Kalman filter. Considering the accuracy and robustness, the procedure can be used as a nondestructive structural health assessment procedure.

Paper Details

Date Published: 8 March 2014
PDF: 10 pages
Proc. SPIE 9061, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014, 90612Y (8 March 2014); doi: 10.1117/12.2045184
Show Author Affiliations
Abdullah Al-Hussein, The Univ. of Arizona (United States)
Achintya Haldar, The Univ. of Arizona (United States)

Published in SPIE Proceedings Vol. 9061:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014
Jerome P. Lynch; Kon-Well Wang; Hoon Sohn, Editor(s)

© SPIE. Terms of Use
Back to Top