Share Email Print
cover

Proceedings Paper

Electrohydroelastic dynamics of macro-fiber composites for underwater energy harvesting from base excitation
Author(s): S. Shahab; A. Erturk
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Low-power electronic systems are used in various underwater applications ranging from naval sensor networks to ecological monitoring for sustainability. In this work, underwater base excitation of cantilevers made of Macro-Fiber Composite (MFC) piezoelectric structures is explored experimentally and theoretically to harvest energy for such wireless electronic components toward enabling self-powered underwater systems. Bimorph cantilevers made of MFCs with different length-to-width ratios and same thickness are tested in air and under water to characterize the change in natural frequency and damping with a focus on the fundamental bending mode. The real and imaginary parts of hydrodynamic frequency response functions are identified and corrected based on this set of experiments. An electrohydroelastic model is developed and experimentally validated for predicting the power delivered to an electrical load as well as the shunted underwater vibration response under base excitation. Variations of the electrical power output with excitation frequency and load resistance are obtained for different length-to-width ratios. Underwater power density results are reported and compared with their in-air counterparts. Specifically a nonlinear dependence of the power density to the cantilever width is reported for energy harvesting from underwater base excitation.

Paper Details

Date Published: 1 April 2014
PDF: 14 pages
Proc. SPIE 9057, Active and Passive Smart Structures and Integrated Systems 2014, 90570C (1 April 2014); doi: 10.1117/12.2045180
Show Author Affiliations
S. Shahab, Georgia Institute of Technology (United States)
A. Erturk, Georgia Institute of Technology (United States)


Published in SPIE Proceedings Vol. 9057:
Active and Passive Smart Structures and Integrated Systems 2014
Wei-Hsin Liao, Editor(s)

© SPIE. Terms of Use
Back to Top