Share Email Print

Proceedings Paper

Self-organisation and motion in plants
Author(s): T. A. Lenau; T. Hesselberg
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Self-organisation appeals to humans because difficult and repeated actions can be avoided through automation via bottom-up nonhierarchical processes. This is in contrast to the top-level controlled action strategy normally applied in automated products and in manufacturing. There are many situations where it is required that objects perform an action dependent on external stimuli. An example is automatic window blinds that open or closes in response to sunlight level. However, simpler and more robust designs could be made using the self-organising principles for movement found in many plants. Plants move to adapt to external conditions, e.g. sun-flower buds tracking the sun, touch-me-not Mimosa and Venus fly trap responding to mechanical stimuli by closing leaves to protect them and capture insects respectively. This paper describes 3 of the basic biomimetic principles used by plants to track the sun; i) light causing an inhibiting effect on the illuminated side causing it to bend, ii) light inducing a signal from the illuminated side that causes an action on the darker side and iii) light illuminating a number of sensing plates pointing upwards at an angle activate an expansion on the same side. A concept for mimicking the second principle is presented. It is a very simple and possible reliable self-organising structure that aligns a plate perpendicular to the source of illumination.

Paper Details

Date Published: 8 March 2014
PDF: 8 pages
Proc. SPIE 9055, Bioinspiration, Biomimetics, and Bioreplication 2014, 90550F (8 March 2014); doi: 10.1117/12.2045155
Show Author Affiliations
T. A. Lenau, Technical Univ. of Denmark (Denmark)
T. Hesselberg, Univ. of Oxford (United Kingdom)

Published in SPIE Proceedings Vol. 9055:
Bioinspiration, Biomimetics, and Bioreplication 2014
Akhlesh Lakhtakia, Editor(s)

© SPIE. Terms of Use
Back to Top