Share Email Print

Proceedings Paper

Using multi-taper method to improve the accuracy of substructure identification for shear structures
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In the authors’ previous work, an inductive substructure identification method was proposed for shear structures, which utilizes the frequency responses (Fourier transforms) of floor accelerations to formulate a series of inductive substructure identification problems, estimating the structural parameters from top to bottom iteratively. However, the simulation results show that the proposed method can only obtain relatively accurate results if measurement noise is not large. In order to improve the identification accuracy, an uncertainty analysis of the parameter identification errors is conducted for this method in this paper, revealing the important factors that influence the identification accuracy. Based on this result, a new substructure identification method is proposed herein, in which the cross power spectral densities (CPSDs) of structural responses, computed via multi-taper method, are utilized to formulate the substructure identification problems. A similar uncertainty analysis of the identification errors is carried out for the new method, illustrating why the new method could significantly improve the identification accuracy. Finally, a numerical example of 8-story shear building structure is utilized to verify the effectiveness of the new multi-taper based substructure method on enhancing the identification accuracy.

Paper Details

Date Published: 8 March 2014
PDF: 11 pages
Proc. SPIE 9061, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014, 90613E (8 March 2014); doi: 10.1117/12.2045056
Show Author Affiliations
Dongyu Zhang, Harbin Institute of Technology (China)
Hui Li, Harbin Institute of Technology (China)
Yuequan Bao, Harbin Institute of Technology (China)

Published in SPIE Proceedings Vol. 9061:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014
Jerome P. Lynch; Kon-Well Wang; Hoon Sohn, Editor(s)

© SPIE. Terms of Use
Back to Top